DOI QR코드

DOI QR Code

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields

정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동

  • Song, Ki-Won (School of Chemical Engineering, Pusan National University) ;
  • Kim, Yoon-Jeong (College of Pharmacy, Pusan National University) ;
  • Lee, Chi-Ho (College of Pharmacy, Pusan National University)
  • 송기원 (부산대학교 공과대학 응용화학공학부) ;
  • 김윤정 (부산대학교 약학대학 제약학과) ;
  • 이치호 (부산대학교 약학대학 제약학과)
  • Published : 2007.06.21

Abstract

Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Keywords

References

  1. J. H. Kim, K. W. Song, J. O. Lee and C. H. Lee, Studies on the flow properties of semi-solid dosage forms (I): Steady shear flow behavior of toothpastes, J. Korean Pharm. Sci., 25, 213-221 (1995)
  2. J. H. Kim, K. W. Song, G. S. Chang, J. O. Lee and C. H. Lee, Studies on the flow properties of semi-solid dosage forms (II) :Temperature-dependent flow behavior of vaseline, J. Pharm. Soc. Korea, 41, 38-47 (1997)
  3. G. M. Eccleston, Structure and rheology of cetomacrogol cream: The influence of alcohol chain length and homologue composition, J. Pharm. Pharmacol., 29, 157-162 (1977) https://doi.org/10.1111/j.2042-7158.1977.tb11274.x
  4. G. M. Eccleston, B. W. Barry and S. S. Davis, Correlation of viscoelastic functions for pharmaceutical semisolids: Comparison of creep and oscillatory tests for oil-in-water creams stabilized by mixed emulsifiers, J. Pharm. Sci., 62, 1954-1961 (1973) https://doi.org/10.1002/jps.2600621210
  5. B. W. Barry and M. C. Meyer, Sensory assessment of spreadability of hydrophilic topical preparations, J. Pharm. Sci., 62, 1349-1354 (1973) https://doi.org/10.1002/jps.2600620828
  6. B. W. Barry, Continuous shear viscoelastic and spreading properties of a new topical vehicle, FAPG base, J. Pharm. Pharmacol., 25, 131-137 (1973) https://doi.org/10.1111/j.2042-7158.1973.tb10606.x
  7. B. W. Barry and A. J. Grace, Sensory testing of spreadability: Investigation of rheological conditions operative during application of topical preparations, J. Pharm. Sci., 61, 335-341 (1972) https://doi.org/10.1002/jps.2600610303
  8. M. L. De Martine and E. L. Cussler, Predicting subjective spreadability, viscosity and stickiness, J. Pharm. Sci., 64, 976-982 (1975) https://doi.org/10.1002/jps.2600640618
  9. B. Idson, Percutaneous absorption, J. Pharm. Sci., 64, 901-924 (1975) https://doi.org/10.1002/jps.2600640604
  10. P. Herh, J. Tkachuk, S. Wu, M. Bernzen and B. Rudolph, The rheology of pharmaceutical and cosmetic semisolids, Amer. Lab., July, 12-14 (1998)
  11. G. W. Radebaugh and A. P. Simonelli, Phenomenological viscoelasticity of a heterogeneous pharmaceutical semisolid, J. Pharm. Sci., 72, 415-422 (1983) https://doi.org/10.1002/jps.2600720423
  12. G. W. Radebaugh and A. P. Simonelli, Temperature-frequency equivalence of the viscoelastic properties of anhydrous lanolin USP, J. Pharm. Sci., 72, 422-425 (1983) https://doi.org/10.1002/jps.2600720424
  13. G. W. Radebaugh and A. P. Simonelli, Application of dynamic mechanical testing to characterize the viscoelastic properties of powder-filled semisolids, J. Pharm. Sci., 73, 590-594 (1984) https://doi.org/10.1002/jps.2600730504
  14. G. W. Radebaugh and A. P. Simonelli, Relationship between powder surface characteristics and viscoelastic properties of powder-filled semisolids, J. Pharm. Sci., 74, 3-10 (1985) https://doi.org/10.1002/jps.2600740103
  15. S. Ishikawa, M. Kobayashi and M. Samejima, Powder-filled semisolids : Influence of powder addition to vaseline on the rheological properties, Chem. Pharm. Bull., 37, 1355-1361 (1989) https://doi.org/10.1248/cpb.37.1355
  16. S. Ishikawa and M. Kobayashi, Influence of powder addition to macrogol ointment Japanese pharmacopeia on the rheological properties, Chem. Pharm. Bull., 38, 2814-2820, (1990) https://doi.org/10.1248/cpb.38.2814
  17. S. Ishikawa, M. Kobayashi and M. Samejima, Evaluation of the rheological properties of various kinds of carboxyvinyl polymer gels, Chem. Pharm. Bull., 36, 2118-2127 (1988) https://doi.org/10.1248/cpb.36.2118
  18. S. Ishikawa and M. Kobayashi, Effect of the powder addition to carboxyvinyl polymer hydrogel on viscoelasticity, Chem. Pharm. Bull., 40, 1897-1901 (1992) https://doi.org/10.1248/cpb.40.1897
  19. L. Bromberg, M. Temchenko, V. Alakhov and T.A. Hatton, Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels, Int. J. Pharm., 282, 45-60 (2004) https://doi.org/10.1016/j.ijpharm.2004.05.030
  20. G. Bonacucina, S. Martelli and G. F. Palmieri, Rheological, mucoadhesive and release properties of carbopol gels in hydrophilic cosolvents, Int. J. Pharm., 282, 115-130 (2004) https://doi.org/10.1016/j.ijpharm.2004.06.012
  21. V. S. Rudraraju and C. M. Wyandt, Rheological characterization of microcrystalline cellulose/sodium-carboxymethyl cellulose hydrogels using a controlled stress rheometer (part I), Int. J. Pharm., 292, 53-61 (2005) https://doi.org/10.1016/j.ijpharm.2004.10.011
  22. V. S. Rudraraju and C. M. Wyandt, Rheology of microcrystalline cellulose and sodium carboxymethyl cellulose hydrogels using a controlled stress rheometer (part II), Int. J. Pharm., 292, 63-73 (2005) https://doi.org/10.1016/j.ijpharm.2004.10.012
  23. M. D. Planas, F. G. Rodriguez, R. B. Maximinno and J. V. H. Dominguez, Thixotropic behavior of a microcrystalline cellulose-sodium carboxymethyl cellulose gel, J. Pharm. Sci., 77, 799-801 (1988) https://doi.org/10.1002/jps.2600770917
  24. G. B. Thurston and A. Martin, Rheology of pharmaceutical system : Oscillatory and steady shear of non-Newtonian viscoelastic liqiuds, J. Pharm. Sci., 67, 1499-1506 (1978) https://doi.org/10.1002/jps.2600671103
  25. J. Ceulemans, L. V. Santvliet and A. Ludwig, Evaluation of continuous shear and creep rheometry in the physical characterisation of ointmets, Int. J. Pharm., 176, 187-202 (1999) https://doi.org/10.1016/S0378-5173(98)00319-6
  26. C. Viseras, G. H. Meeten and A. Lopez-Galindo, Pharmaceutical grade phyllosilicate dispersions : The influence of shear history on floc structure, Int. J. Pharm., 182, 7-20, (1999) https://doi.org/10.1016/S0378-5173(99)00075-7
  27. S. S. Davis, Viscoelastic properties of pharmaceutical semisolids IV:Destructive oscillatory testing, J. Pharm. Sci., 60, 1356-1360 (1971) https://doi.org/10.1002/jps.2600600914
  28. M. Kobayashi, S. Ishikawa and M. Samejima, Application of nonlinear viscoelastic analysis by the oscillation method to some pharmaceutical ointments in the Japanese pharmacopeia, Chem. Pharm. Bull., 30, 4468-4478 (1982) https://doi.org/10.1248/cpb.30.4468
  29. K. W. Song and G. S. Chang, Nonlinear viscoelastic behavior of concentrated polyisobutylene solutions in large amplitude oscillatory shear deformation, Korean J. Rheol., 10, 173-183 (1998)
  30. H. Y. Kuk, G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of concentrated xanthan gum solutions :Experimental investigation and Fourier transform analysis, Theor. Appl. Rheol., 10(1), 95-99 (2006)
  31. D. Q. M. Craig and F. A. Johnson, Pharmaceutical applications of dynamic mechanical thermal analysis, Thermochim. Acta, 248, 97-115 (1995) https://doi.org/10.1016/0040-6031(94)01888-N
  32. K. S. Anseth, C. N. Bowman and L. Brannon-Peppas, Mechanical properties of hydrogels and their experimetal determination, Biomaterials, 17, 1647-1657 (1996) https://doi.org/10.1016/0142-9612(96)87644-7
  33. D. S. Jones, Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance, Int. J. Pharm., 179, 167-178 (1999) https://doi.org/10.1016/S0378-5173(98)00337-8
  34. G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of viscoelastic liquids :Fourier transform analysis, Theor. Appl. Rheol., 4(1), 62-65 (2000)
  35. G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of viscoelastic liquids : Application of a separable BKZ model (Wagner constitutive equation), Theor. Appl. Rheol., 4(2), 3-6 (2000)
  36. G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of viscoelastic liquids:Application of a Doi-Edwards constitutive equation, Theor. Appl. Rheol., 5(1), 25-28 (2001)
  37. J. C. Boylan, Rheological study of selected pharmaceutical semisolids, J. Pharm. Sci., 55, 710-715 (1966) https://doi.org/10.1002/jps.2600550708
  38. R. C. C. Fu and D. M. Lidgate, Characterization of the shear sensitivity property of petrolatum, J. Pharm. Sci., 74, 290-294 (1985) https://doi.org/10.1002/jps.2600740313
  39. B. F. Birdwell and F. W. Jessen, Crystallization of petroleum waxes, Nature, 209, 366-368 (1966) https://doi.org/10.1038/209366a0
  40. B. W. Barry and A. J. Grace, Structural, rheological and textural properties of soft paraffins, J. Texture Studies, 2, 259-279 (1971) https://doi.org/10.1111/j.1745-4603.1971.tb01004.x
  41. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee and C. H. Lee, Steady shear flow properties of aqueous poly (ethylene oxide) solutions, J. Korean Phar. Sci., 29, 193-203 (1999)
  42. K. W. Song, Y. S. Kim and G. S. Chang, Rheology of concentrated xanthan gum solutions:Steady shear flow behavior, Fibers and Polymers, 7, 129-138 (2006) https://doi.org/10.1007/BF02908257
  43. B. W. Barry, Advances in Pharmaceutical Sciences, Vol. 4, H.S. Bean, A.H. Beckett and J.E. Carless Eds, Academic Press, New York, pp. 1-72 (1974)
  44. L. E. Pena, B. L. Lee and J. F. Stearns, Structural rheology of a model ointment, Pharm. Res., 11, 875-881 (1994) https://doi.org/10.1023/A:1018990010686
  45. H. A. Barnes and K. Walters, The yield stress myth?, Rheol. Acta, 24, 323-326 (1986) https://doi.org/10.1007/BF01333960
  46. J. S. Hartnett and R. Y. Z. Hu, The yield stress :An engineering reality, J. Rheol., 33, 671-679 (1989) https://doi.org/10.1122/1.550006
  47. H. A. Barnes, The yield stress:A review of '${\pi}\;{\alpha}\;{\nu}\;{\tau}\;{\alpha}\;{\rho}\;{\varepsilon}\;{\iota}$' - Everything flows?, J. Non-Newt. Fluid Mech., 81, 133-178 (1999) https://doi.org/10.1016/S0377-0257(98)00094-9
  48. D. Hadjistamov, The yield stress :A new point of view, Appl. Rheol., 13, 209-211 (2003)
  49. J. R. Stokes and J. H. Telford, Measuring the yield behavior of structured fluids, J. Non-Newt. Fluid Mech., 124, 137-146, (2004) https://doi.org/10.1016/j.jnnfm.2004.09.001
  50. H. Zhu, Y. D. Kim and D. De Kee, Non-Newtonian fluids with a yield stress, J. Non-Newt. Fluid Mech., 129, 177-181, (2005) https://doi.org/10.1016/j.jnnfm.2005.06.001
  51. E. C. Bingham, Fluidity and Plasticity, McGraw-Hill, New York, pp. 215-218 (1922)
  52. N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, in Rheology of Disperse Systems, C.C. Mill Ed., Pergamon Press, London, pp. 84 (1959)
  53. W. H. Herschel and R. Bulkley, Measurement of consistency as applied to rubber-benzene solutions, Proc. Amer, Soc. Test. Mat., 26(II), 621-633 (1926)
  54. S. Mizrahi and Z. Berk, Flow behavior of concentrated orange juice:Mathematical treatment, J. Texture Studies, 3, 69-79 (1972) https://doi.org/10.1111/j.1745-4603.1972.tb00610.x
  55. J. J. Vocadlo and M. E. Charles, Characterization and laminar flow of fluid-like viscoplastic substances, Can. J. Chem. Eng., 51, 116-121 (1973) https://doi.org/10.1002/cjce.5450510122
  56. W. Heinz, The Casson flow equation:Its validity for suspension of paints, Material Prufung, 1, 311-316 (1959)
  57. R. Y. Ofoli, R. G. Morgan and J. F. Steffe, A generalized rheological model for inelastic fluid foods, J. Texture Studies, 18, 213-230 (1987) https://doi.org/10.1111/j.1745-4603.1987.tb00899.x
  58. K. W. Song and G. S. Chang, Steady shear flow and dynamic viscoelastic properties of semi-solid food materials, Korean J. Rheol., 11, 143-152 (1999)
  59. M. Dervisoglu and J. L. Kokini, Steady shear rheology and fluid mechanics of four semi-solid foods, J. Food Sci., 51, 541-546, 625 (1986) https://doi.org/10.1111/j.1365-2621.1986.tb13874.x