Effect of Surface Modification of Polyester Cord on the Adhesion of SBR/Polyester

폴리에스터 코드의 표면개질 조건이 SBR/폴리에스터의 접착에 미치는 영향

  • Park, Y.S. (Dept. of Polymer Engineering, The University of Suwon) ;
  • Chung, K.H. (Dept. of Polymer Engineering, The University of Suwon)
  • 박영삼 (수원대학교 공과대학 신소재공학과) ;
  • 정경호 (수원대학교 공과대학 신소재공학과)
  • Published : 2007.06.30

Abstract

In this study, the new adhesion system was studied to improve the adhesion strength between polyester cord and rubber matrix. In order to enhance the adhesion strength through polyester cord's surface treatment, the NaOH solution was used. The NaOH solution concentrations of 0.03, 0.05, 0.1, 0.2, 0.5, 1 and 5 wt.% were used in surface modifying the polyester cord. The optimum condition showing the maximum adhesion strength of polyester cord with SBR compound containing bonding agent was at NaOH concentration of 0.05 wt.% with treatment time of 10 minutes. When the NaOH solution concentration was above 1 wt.%, the polyester cord due to the excess surface modification was damaged, and resulted in breakage during the adhesion test. Also, the adhesion strength between polyester and SBR could be improved by coating the polyester cord with triallylcyanurate(TC) adhesive. The drying condition of polyester cord coated with TC attributed to the adhesion strength. The maximum adhesion strength was obtained by using the polyester cord dried at $220^{\circ}C$ rather than dried at room temperature.

본 연구에서는 폴리에스터 코드와 고무 매트릭스간의 접착을 향상시키기 위한 접착시스템에 관해 조사하였다. 폴리에스터 코드의 표면 활성화를 통해 접착력을 증진시키기 위해 0.03, 0.05, 0.1, 0.2, 0.5, 1 및 5 wt.% NaOH 용액으로 폴리에스터 코드를 개질하였다. 개질된 폴리에스터 코드와 결합제가 직접블렌딩된 SBR 고무혼합물과의 접착력을 평가한 결과 0.05 wt.%의 NaOH 농도에서 10분 개질 할 때 최대의 접착강도를 나타내었다. 1 wt.% 이상의 NaOH 농도에서는 과도한 개질로 인한 폴리에스터 코드의 손상으로 인하여 접착력 실험 동안 코드의 파괴가 발생하였다. 또한, 개질한 폴리에스터 코드에 triallylcyanurate(TC) 접착제를 코팅한 후 상온에서 건조하여 접착시키는 경우 보다 $220^{\circ}C$의 고온에서 건조한 후 고무 매트릭스와 접착시킬 경우 가장 우수한 접착력을 나타내었다.

Keywords

References

  1. T. Takeyama and J. Matsui, 'Recent developments with tire cords and cord-to-rubber bonding', Rubber Chem. Tech., 42, 159 (1969) https://doi.org/10.5254/1.3539206
  2. K. H. Chung, S. J. Lee, and Y. W. Chang, 'Adhesion Properties of Rubber composite with Direct Blending Technique and Adhesive Composition', Elastomer, 34(3), 253 (1999)
  3. W. H. Charch and D. B. Maney, U.S. Patent 2,128,229 (1938)
  4. Y. Iyenger, 'Adhesion of Kevlar Aramid Cords to Rubber', J. Appl. Polym. Sci., 22, 801 (1978) https://doi.org/10.1002/app.1978.070220317
  5. K. Matsushige, S. V. Radcliffe and E. Bear, 'The Pressure and Temperature Effects on Brittle-to-ductile Transition in PS and PMMA', J. Appl. Polym. Sci., 20, 1853 (1976) https://doi.org/10.1002/app.1976.070200714
  6. K. H. Chung, D. K. Kang, T. H. Yoon and S. Y. Kaang, 'Adhesion study of SBR-Nylon by Direct Blending Technique', J. of the Society of Adhesion and Interface, 1(1), 1 (2000)
  7. C. J. Shoaf, U.S. Patent 3,307,966 (1967)
  8. J. Mather, Br. Polym. J., 3, 58 (1971) https://doi.org/10.1002/pi.4980030202
  9. W. Chen and T. J. McCarthy, 'Chemical Surface medification of Poly(ethylene-terephthalate)', Macromolecules, 31, 3648 (1998) https://doi.org/10.1021/ma9710601
  10. J. M. Brynaert, M. Deldime, I. Dupont, J. L. Dewez, and Y. J. Schneider, 'Surface Functionalization of poly(ethylene-terephthalate) film and membrane by controlled wet chemistry: Chemical characterization of carboxylated surfaces', Journal of Colloid Interface Science, 173, 233 (1995)
  11. F. Manenq, S Carlotti, and A. Mas, Die Angewandte Makromolekulare Chemie, 271, 50 (1991)
  12. D. W. Nicholson, D. I. Livingston and G. S. Fielding Russell, 'A New Tire Cord Adhesion Test' Tire Science and Technology, 6(2), 1978