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대수부등식들만을 이용한                               
갈라거 랜덤 코딩 바운드의 유도
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요  약

이 논문에서 우리는 이산무기억통신로 (Discrete Memoryless Channel)에 대한 갈라거 랜덤 코딩 바운드를

개념적으로 이해하기 어려운 랜덤코딩 방법론을 따르지 않고 순전히 대수부등식들만을 이용함으로써 유도해 낸

다. 갈라거 랜덤코딩바운드는 결정영역(Decision Region)을 알수 없는 경우에도 적용될 뿐만아니라 채널코딩정

리까지 유도할 수 있는 매우 강력한 바운드로서 정보 및 부호이론 연구에 있어서 매우 중요한 도구이다. 그동

안 개념적으로 이해하기 어려웠던 갈라거 랜덤코딩바운드를 대수적으로 차근차근 유도해 봄으로써 다양한 문제

에 쉽게 적용할 수 있는 이론적 바탕을 마련해 보고자 한다.
Abstract

In this letter, we derive the Gallager random coding bound for discrete memoryless channels purely by simple 
manipulations of algebraic inequalities rather than invoking conceptually difficult random coding arguments. 
Gallager random coding bound is a very useful tool in information and coding theory due to its applicability 
to situations in which it is difficult to determine the decision regions and due to the fact that it can be used 
to derive the channel coding theorem. The readers will find it relatively easy to apply to many practical 
problems of interest the step-by-step algebraic derivations of the Gallager random coding bound with appropriate 
modifications.
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I. Introduction

In this letter, we derive the Gallager random coding 
bound for discrete memoryless channels by a sequence 
of algebraic manipulations of simple inequalities rather 

than exploiting the random coding arguments [1]. 
Random coding bound analysis has been one of the 

most important analysis tools in information and coding 
theory [2]. First of all, it provides the cut off rate [3] 
which has long played the role of practical limits on 
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achievable transmission rate of a given communication 
system design.  Secondly, it has served as a primary 
information theoretic tool for finite packet length 
performance analysis. While channel capacity can be 
used instead of cut-off rate for the performance limit, it 
fails to provide useful information about the 
performance of a coded system with very limited packet 
length. However, random coding bound can still provide 
insightful information about the performance of finite 
packet length systems. This is particularly useful when 
we are dealing with fading channels. Thirdly, random 
coding bound and cut-off rate provide useful 
performance metric in system design [4].

However, many people find it difficult to understand 
the concept of random coding arguments. This is 
particularly true when Gallager bound rather than union 
bound is used. In this letter, we derive the random 
coding bound not by the random coding arguments but 
by step-by-step applications of algebraic inequalities. 
The procedures in this letter will lead the reader to 
understand the rigorous steps involved in the derivations 
of the random coding bound and hence will eventually 
make them better understand the random coding 
arguments itself so that they can apply the methods to 
practical system designs of their interest without 
difficulty.

Ⅱ. System Model

In this letter, we consider a -ary   block code 
over a discrete memoryless channel with input alphabet 
 ⋯ and output alphabet  ⋯. Here, 
  denotes the number of codewords in the code and   
the number of symbols in a codeword. We denote by 
 the transition probability from the input alphabet   
to the output alphabet  . Hence, if we denote by   and 
  the input and output symbols of the channel, then

                (1)

for   ⋯, and   ⋯.

We assume that the   codewords are selected 
equally likely and the receiver is assumed to use the 
maximum likelihood decoding rule to minimize the 
codeword error probability. Since each codeword 
consists of   -ary symbols, there are  possible 
choices of codes. Let us denote these  codes by 
 ⋯


 . For example,  shall denote the code in 

which all   codewords are given by ⋯ , namely, 
the codeword made solely by the symbol 1 and similarly 


  the code in which all   codewords are ⋯  . 

Obiviously, the system will perform very poorly when 
either  or 


  is chosen for its channel coding 

scheme. Consequently, the system performance will 
naturally be dependant upon which code is chosen.

Let us denote by   the decoding error 
probability when a particular code   is chosen. Also, 
we define by    the decoding error probability 
when a code   is employed and its   codeword is 
transmitted. Then, since all the codewords are assumed 
to be equally likely to be transmitted, it follows that

  
 





           (2)

Ⅲ. Mathematical Preliminaries

In this section, we present a series of lemmas needed 
to derive the random coding bound. Before proceeding, 
to facilitate the discussion, we define the function 
 ⋯


   called the random coding bound by

 ⋯

  






         (3)

for non-negative real numbers ⋯

  satisfying 

⋯

   . We note that the random coding 
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bound is a kind of weighted average of the decoding 
error probabilities over all possible codes. There are a 
number of possible ways to interpret the random coding 
bound. To see the most important one of them, let us 
consider the following lemma.

Lemma 1 : Let ⋯

  be arbitrary non-negative 

real numbers such that ⋯

  .  Then, 

there exists at least one code  such that

  ≤  ⋯

  .       (4)

Proof : Assume on the contrary that

   ⋯

          (5)

holds for all code . But, we note that at least one 
  must be strictly positive so that

    ⋯

        (6)

and hence that







 
 




 ⋯

      (7)

This is a contradiction because both the left and right 
hand sides of the above inequality indicates the same 
quantity  ⋯


  .

Lemma 1 says that there exists at least one code that 
has decoding error probability lower than the random 
coding bound. In other words, the random coding bound 
serves as an upper bound for performance achievable by 
one of the  possible codes. But, we note that the 
random coding bound itself is a function of non-negative 
real numbers ⋯


  that can be chosen arbitrary as 

long as they satisfy the condition ⋯

  . 

The next lemma provide a class of possible choices of 

⋯

 . 

Before proceeding to Lemma 2, we define  
functions ⋯  defined on   so that     
denotes the number of symbol   contained in the vector 
∊ . By   , we desire to indicate the number of 
symbol  contained in a codeword ∊ . Next, we 
define another set of functions ⋯  defined on the 
set of codes ⋯


 so that    indicates 

the number of symbol   in all the codewords in . 
Then, it follows that

  
∊

             (8)

Lemma 2 : Let ⋯  be non-negative real 
numbers with ⋯   and define  by

  
 

  ⋯ 
        (9)

for   ⋯ Then, 's are non-negative real 
numbers and ⋯


   .

Proof : We can regard that a code  can be 
regarded as a string of   symbols from   with 
each   consecutive symbols indicating a codeword. 
Then, the set ⋯


 of all codes denotes the 

set of all strings of symbols from   of length  . 
Consequently, it follows that








  ⋯ 

 

 

 
∊



⋯ 

 
∊




 

 ⋯
 

⋯ 
 

 ⋯
 

 

 
∊



⋯ 

 
∊





 



 



⋯ 

 



 
 






 

 
∊



  




 

 


⋯ 


 

 
∊



  






 




(10)

which should be equal to   since
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∊



  




   

 ∊

⋯ 
 ∊

  




⋯ 


 



⋯ 
 



 ⋯ 

  


⋯  




 

  (11)

We shall use the 's defined in Lemma 2 in 
deriving Gallager random coding bound. We shall first 
obtain a Gallager bound on   . For that purpose, 

we define a notation   to denote the probability of 
receiving   when the codeword   is transmitted. Since 
we are dealing with a discrete memoryless channel with 
transition probability , it follows that

 ⋯ ⋯ 
⋯

 (12)

Lemma 3 : Let 
 denote the   codeword of the 

code . Then, for any    we have

  ≤ 
∊




 




× 
≠


 







   (13)

Proof : Since the decoder is assumed to use the 
maximum likelihood decision rule, the decision 
region    is given by


 ∊   

 ≥ max
Now, let   be an arbitrarily chosen positive real 
number. Then, since for any ∉  ,










≠







 





 











≥        (14)

and since   ⊆ , it follows

   
∉






≤ 
∉















≠







 





 











≤ 
∊















≠







 





 









 
∊




 





≠


 







  (15)

Ⅳ. Random Coding Bound

In this section, using the lemmas presented in the 
previous section, we derive the random coding bound 
purely by algegraic manipulations of simple inequalities. 
The result is presented in the following theorem.

Theorem 1 (Random Coding Bound):
Let ⋯  be arbitrarily chosen non-negative real 

numbers such that 
  



  . Then, for any  ∊  

there exists at least one code   such that

  ≤ 




  




  
















  (16)

Proof : First, we define ⋯

  as in Lemma 2. 

Also we define 
⋯


   by


⋯


  







     (17)

so that

 ⋯

   

 





⋯


    (18)

Then,
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⋯


 

 

 
∊
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∊
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 ⋯
 

× ⋯

 

 
∊
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∊
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× ⋯

(19)

Now, let   be abitrarily chosen real number in 
. Then, from Lemma 3, we obtain


⋯


 

≤ 

 
∊



⋯ 

 

∊
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∊



 





≠

 







(20)
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∊



  







  



 







×
≠  ∊



  






 ≠

 







Next, we apply the Jensen inequality according to 
which


 ⋯

 ≤ ⋯
     (21)

holds for any non-negative real numbers ⋯  and 
⋯  such that ⋯   when     . 
Now, applying the above inequality,

we obtain

≠  ∊


 






 ≠
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≠  ∊
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(22)






≠



 
∊
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Hence, it follows


⋯


 

≤  
∊










∊



  




  

 









(23)

Here, if we write  ⋯  and 
 ⋯ , then


  ⋯ 

    ⋯         (24)

and

  
⋯

         (25)

Consequently, by rewriting the above inequality, we 
obtain


⋯


 

≤  
∊










∊



  

   













(26)

Next, we note that
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    (27)
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∊

  





 





to conclude


⋯


 

≤ 




 




  



  











   (28)

This implies, in turn, that

 ⋯

 

 
 






⋯


 

≤ 




 




  



  











  (29)

Finally, using Lemma 1, we conclude that there exists 
at least one code   such that

  ≤  ⋯

 

≤ 




 




  



  











   (30)

We note that the Gallager random coding bound in 
Theorem 1 depends on the choices of  the probabilities 
⋯  and the real number  . Hence, we can further 
attempt to obtain minimum random coding bound over 
all possible choices of these values. In fact, it is shown 
in [1] that the channel coding theorem for discrete 
memoryless channel can be derived from Theorem 1 by 
solving this minimization problem.

Ⅴ. Conclusions

In this letter, we presented an alternative derivation of 
the Gallager random coding bound based on simple 

algebraic manipulations rather than invoking the random 
coding argument which is conceptually harder to 
understand. We believe the derivation in this letter will 
be useful to the readers not only in obtaining various 
practical performance bounds but also in making 
themselves better understand the random coding bound 
arguments itself so that they can easily apply the 
methods to practical problems of their own interest.
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