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ON NCI RINGS

SEO UN HWANG, YOUNG CHEOL JEON, AND KWANG SUG PARK

ABSTRACT. We in this note introduce the concept of NCI rings which is
a generalization of NI rings. We study the basic structure of NCI rings,
concentrating rings of bounded index of nilpotency and von Neumann

regular rings. We also construct suitable examples to the situations raised
naturally in the process.

1. Introduction

Throughout this note every ring is associative with identity unless otherwise
stated. Let R be a ring (possibly without identity). We use N.(R), N*(R), and
N(R) to denote the prime radical (i.e., the intersection of all prime ideals), the
nilradical (i.e., the sum of all nil ideals), and the set of all nilpotent elements
in R, respectively. Note N,(R) C N*(R) C N(R). The n by n matrix ring
over R is denoted by Mat,(R). The n by n upper and lower triangular matrix
rings over R are denoted by UT M, (R) and LT M, (R), respectively.

A ring will be called nil-simple if it has no nonzero nil ideals. Kim et al. [12]
called such a ring nil-semisimple, but nil-simple may be more suitable for this
situation. Nil-simple rings are clearly semiprime, but semiprime rings need not
be nil-simple as can be seen by [11, Example 1.2 and Proposition 1.3]. Due to
Rowen [19, Definition 2.6.5], an ideal P of a ring R is called strongly prime if P
is prime and R/P is nil-simple. Maximal ideals are clearly strongly prime. Nil-
simple rings need not be prime as can be seen by direct products of reduced
rings; and prime rings also need not be nil-simple by [11, Example 1.2 and
Proposition 1.3].

An ideal P of a ring R is called minimal strongly prime if P is minimal in the
space of strongly prime ideals in R. N*(R) of a ring R is the unique maximal
nil ideal of R by [19, Proposition 2.6.2], and with the help of {19, Proposition
2.6.7] we have

N*(R) = {a € R | RaR is a nil ideal of R}
n{P | P is a strongly prime ideal of R}

Received January 5, 2006.

2000 Mathematics Subject Classification. 16D25, 16E50, 16N40, 16N60, 16536.
Key words and phrases. NCI ring, NI ring, von Neumann regular ring, of bounded index
of nilpotency, semiprime ring, reduced ring.

(©2007 The Korean Mathematical Society
215



216 SEO UN HWANG, YOUNG CHEOL JEON, AND KWANG SUG PARK

= ﬂ{P | P is a minimal strongly prime ideal of R}.

A ring is called reduced if it has no nonzero nilpotent elements. Due to
Marks [16], a ring R is called NI if N*(R) = N(R). Note that R is NI if
and only if N(R) forms an ideal if and only if R/N*(R) is reduced. A ring
R is called 2-primal if N.(R) = N(R), according to Birkenmeier et al. [2].
It is obvious that R is 2-primal if and only if R/N.(R) is reduced. 2-primal
rings are almost completely characterized by Marks [17]. Note that a ring R
is reduced if and only if R is nil-simple and NI if and only if R is semiprime
and 2-primal. It is obvious that 2-primal rings are NI, but the converse need
not hold by Birkenmeier et al. [3, Example 3.3], Marks [16, Example 2.2], or
111, Example 1.2]. Note that Mat,(R) is always not NI for any ring R with
identity and n > 2.

We now introduce the following concept that is a generalization of NI rings: a
ring R is called NCI provided that N(R) contains a nonzero ideal of R whenever
N(R) # 0.

Lemma 1.1. (1) For any ring A (possibly without identity), UT M,(A) and
LTM,(A) are NCI forn > 2.

(2) For a ring A, Mat,(A) is not NI for n > 2.

(3) Let A be a ring (possibly without identity) with N(A) # 0. Then A s
NCI if and only if N*(A) # 0.

(4) If a ring A is NCI with a nilpotent nonzero ideal then Mat,, (A) is NCI.

(5) For a simple ring A, Mat,(A) is not NCI for n > 2.

(6) For a reduced ring A, Mat,(A) is not NCI for n > 2.

(7) Let A be a ring. If Mat,(A) is NCI then so is A.

Proof. (1) UTM,(A) and LT M, (A) have the nonzero nilpotent ideals

(00 - 0 A 0 0 - 0 O
0o 0 --- 0 O 0 O 0 O
.:.::and.:..:"
\0 0 .- 0 0 \4 0 -~ 0 0

respectively. Thus they are NCI when n > 2.

(2) By the existence of the nonzero nilpotent | . . . |, Mat,(A)

cannot be NI for n > 2.

The proof of (3) is obtained from the definition since N*(A) is the sum of
all nil ideals of A. |

(4) Let I be a nilpotent nonzero ideal of A. Then Mat,(I) is a nonzero
nilpotent ideal of Mat,(A) and so Mat,(A) is NCI by (3).

(5) Since A is simple, N*(Mat,{(A4)) = 0. But N(Mat,(A)) # 0 and so
Matn(A) is not NCI by (3).
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(6) Assuming that Mat, (A) is NCI, then N*(Mat,(A)) # 0 and so there
exists a nonzero nil ideal I of A such that N*(Mat, (A)) = Mat,(I), a contra-
diction to the reducedness of A.

(7) It suffices to compute the case of n > 2. If Mat,(A) is NCI then

N*(Mat,(A)) # 0 and so there exists a nonzero nil ideal I of A such that
N*(Mat,(A)) = Mat,(I). 0

NI rings are clearly NCI but the converse need not be true by the following
example. The index (of nilpotency) of a nilpotent element x in a ring R is the
least positive integer n such that x™ = 0. The index (of nilpotency) of a subset
I of R is the supremum of the indices of all nilpotent elements in [. If such a
supremum is finite, then I is said to be of bounded index of nilpotency.

Example 1.2. (1) Let T be a ring, S = UTM3(T"), and R = Maty(S). Then
R is not NI by Lemma 1.1(2). Consider the ideal

0 T 0 T
0 0 0 0

I = 0 T 0 T of R.
0 0 0 0

Then I2 = 0 and 0 # I, so R is NCI by Lemma 1.1(4).

(2) Let F{X,Y} be the free algebra on X,Y over a field F and I = (X?)?,
where (X?) is the ideal of F{X,Y} generated by X2. Consider the ring R =
F{X,Y}/I. Then N,(R) = Rz?’R and N(R) = zRz + Rz*R + Fz by the
computation in {9, Example 1], where £ = X + I. Moreover we get N,(R) =
Rz?’R = N*(R). If not, N*(R)/N.(R) is a nonzero nil ideal of S = R/N.(R) =
F{X,Y}/(X?%). But S is a prime ring with N(S) = N5(S) by the computation
in [9, Example 1], where N2(S5) denotes the set of all nilpotent elements of
index 2 in S. It then follows that @*> = 0 for any 0 # a € N*(R)/N.(R),
and so aSa = 0 by [10, Lemma 11]. But since § is prime, we get a = 0, a
contradiction. Hence 0 # N,(R) = N*(R) C N(R). Therefore R is NCI by
Lemma 1.1(3) but R is not NI.

When given a ring R is of bounded index of nilpotency, R is NI if and only
if R is 2-primal by [11, Proposition 1.4]. So one may conjecture that R is NI if
and only if R is NCI when R is of bounded index of nilpotency. However the
answer is negative by Example 1.2(2). In Example 1.2(2), the ring R has index
4 since S has index 2, but it is not NI. But if given rings are of bounded index
of nilpotency and semiprime then we get an affirmative answer as follows.

Proposition 1.3. Suppose that a ring R is of bounded index of nilpotency.
Then the following conditions are equivalent:
(1) R is reduced;
(2) R is 2-primal and semiprime;
(3) R is NI and semiprime;
(4) R is NCI and semiprime.
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Proof. Tt suffices to show (4)=(1) since reduced rings are semiprime. Since R
is of bounded index of nilpotency, we get N.(R) = N*(R) by the proof of {11,
Proposition 1.4] based on Levitzki [8, Lemma 1.1] or Klein [13, Lemma 5]. Now
suppose that R is both NCI and semiprime. Then we have 0 = N, (R) = N*(R)
from the semiprimeness of R, and N(R) = 0 follows from the NCIness of R. [

The ring R in Example 1.2(2), that is NCI but not NI, is not semiprime.
The condition “of bounded index of nilpotency” is not superfluous as can be
seen by the semiprime NI ring (that is not 2-primal) in [3, Example 3.3].

A ring R is called von Neumann reqular if for each a € R there exists x € R
such that ¢ = aza. A ring R is called strongly regular if for each @ € R there
exists £ € R such that a = a®z. A ring is called abelian if every idempotent is
central. A ring is strongly regular if and only if it is abelian and von Neumann
regular [5, Theorem 3.5]. A ring is called right (resp. left) duo if every right
(resp. left) ideal is two-sided. |

Proposition 1.4. Let R be a von Neumann reqular ring. Then the following
conditions are equivalent:

(1) R is right (left) duo;

(2) R is reduced;

(3) R is abelian;

(4) R is 2-primal;

(5) R is NI

(6) R is NCL

Proof. The equivalences of the conditions (1), (2), and (3) are proved by |[5,

Theorem 3.2]. (2)=(4), (4)=(5), and (5)=-(6) are straightforward. |
(6)=(2): Let R be NCI and assume N(R) # 0. Then R contains a nonzero

nil ideal, say I. Take 0 # a € I. Since R is von Neumann regular, there exists

b € R such that a = aba. Then we get a = aba = ababa = abababa = ---. But
ab € I, say (ab)™ = 0. Consequently we have 0 # a = aba = --- = (ab)"a = 0,
a contradiction. ]

From Proposition 1.4 we obtain a similar result to [5, Theorem 3.5].

Corollary 1.5. A ring s strongly reqular if and only if it 1s both NCI and von
Neumann regular.

2. Basic structure and examples of NCI rings

In this section we study the basic structure of NCI rings and extend the
class of NCI rings.

Lemma 2.1. The class of NCI rings is closed under direct sums and direct
products.

Proof. Suppose that R; is an NCI ring for each ¢ in a nonempty index set I,
and let D be the direct sum of R;’s. If every R; is reduced then so is D, and
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so we assume that not every R; is reduced. Then the direct sum of N*(R;)’s is
a nonzero nil ideal of D since every R; is NCI; hence D is also NCI. The proof
for direct products is similar. [

Remark. (1) The direct sums in Lemma 2.1 are considered as rings possibly
without identity.

(2) The converse of Lemma 2.1 need not be true. Let Ry = Mats(A) and
Ry = UTM5(A) where A is a simple ring. The direct sum D = R; & R3 has
nonzero nil ideal 0 & (8 61), and so D is NCI by Lemma 1.1(3). But R; is

not NCI by Lemma 1.1(5).

Subrings (possibly without identity) of NI (resp. 2-primal) rings are also
NI (resp. 2-primal) by [11, Proposition 2.4(2)] (resp. [2, Proposition 2.2}).
However the class of NCI rings is not closed under subrings by the following.

Example 2.2. (1) Let A be a simple ring and S = Mat,(A) with n > 2. Then
S is not NCI by Lemma 1.1(5). Consider the ring R = UT M,,(S) with m > 2.

S 0 -+ 0 0)
o S --- 0 0
Then R is NCI by Lemma 1.1(1), but the subring o
\0 0 - 0 S/

@, S; of R is not NCI, where S§; = S for all i.

(2) The ring D in Remark(2) of Lemma 2.1 is NCI but the subring R; ¢ 0
is not NCI.

Factor rings and ideals of NCI rings need not be NCI as can be seen by

D
0% R, >~ R; and R; @ 0 in Remark(2) of Lemma 2.1.

Given a ring R and a proper ideal I of R, it is proved that R is NI (resp.
2-primal) when R/I and I are both NI (resp. 2-primal) by [11, Proposition
2.4(1)] (resp. [2, Proposition 2.4]), where I is considered as a subring without
identity. However this result need not hold for NCI rings by the following.

Example 2.3. Let Z be the ring of integers. Set R = Mat,(Z) ® Z for n > 2.

Taking I = 0@ 4Z, then ? = Mat,(Z)® %Z— is NCI with the nonzero nil ideal
27

0® A and I is reduced (so NCI). However R is not NCI by Lemma 1.1(6).

But if the NCI ideal I has nonzero N*(I) then R is also NCI as follows.

Proposition 2.4. Let R be a ring and I be a nonzero proper ideal of R. If I
is NCI with N(I) # 0 as a subring without identity then R is NCI.

Proof. Let I be NCI with N(I) # 0. Then N*(I) #0, say J. Take 0 #a € J
and consider the ideal RaR. Note RaR C I. Let x = ) (; ...7as € RaR. Then

r3 = ZZZ(TGST)CL(STQS) € Ial C J,
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hence z* is nilpotent, forcing x € N(R). Thus R is NCI. O

A ring R is called directly finite if ab = 1 implies ba = 1 for a,b € R. NI
(resp. 2-primal) ring is directly finite by [11, Proposition 2.7(1) (resp. |2,
Proposition 2.10]). However this result cannot be extended to the class of NCI
rings as follows.

Example 2.5. Let F' be a field and R be the column finite infinite matrix ring
over F'. Let a € R be the matrix with (i,7 + 1)-entry 1 and zero elsewhere,
and b € R be the matrix with (¢ + 1,7)-entry 1 and zero elsewhere, where
¢t =1,2,.... Then ab =1 but ba # 1, hence R is not directly finite.

Next consider U = UT'M,,(R) for n > 2. Then U is NCI by Lemma 1.1(1).
But xy = 1 and yx # 1 with the help of the computation above where x,y € U
are scalar matrices with diagonals a,b respectively. Thus U is not directly
finite.

Given a ring R the polynomial ring and the (formal) power series ring over R
are denoted by R[X| and R[[X]] respectively, where X is any set of commuting
indeterminates over R: if X = {z} then write R[z] and R[[z]] in place of R{{z}]
and R[[{x}]] respectively.

Birkenmeier et al. [2, Proposition 2.6] proved that polynomial rings over
2-primal rings are also 2-primal. While there exists an NI ring over which
the polynomial ring need not be NI by Smoktunowicz [20]. We do not know
whether polynomial rings over NCI rings are NCI. But for rings of bounded
index of nilpotency, the NClness can go up to polynomial rings.

Proposition 2.6. Let R be a ring of bounded index of nilpotency. Then the
Jollowing conditions are equivalent:

(1) R is NCI,

(2) R[(X] is NCI,

(3) R|[X]] is NCL.

Proof. (1)=-(2): If R is reduced then so is R[X], so we assume N(R) # 0. If
R is NCI then N*(R) # 0. Then N*(R) contains a nonzero nilpotent ideal
of R by [8, Lemma 1.1] or [13, Lemma, 5], say N. Then R[X] has a nonzero
nilpotent ideal N|[X]|, proving that R[X] is NCIL

(2)=(1): If R[X] is reduced then so is R, so we assume N(R[X]) # 0. If
R[X] is NCI then N*(R[X]) # 0, say that 0 # f(X) € N*(R[X]) and a € R
is the nonzero coeflicient of a term of the least degree in f(X). Then RaR is
a nonzero nil ideal of R since R[X|f(X)R[X] is a nil ideal of R[X]. Thus R is
NCI.

The proofs of (1)=(3) and (3)=-(1) are similar to the preceding one. O

Remark. The proofs of (2)=>(1) and (3)=(1) are obtained without the condi-
tion “of bounded index of nilpotency”.

Given a ring R, an endomorphism ¢ of R, and a o-derivation § of R, the
Ore extension R|x;0,d] of R is the ring obtained by giving the polynomial ring
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R|z] the new multiplication zr = o(r)z + &(r) for all r € R. If § = 0 then we
write R[z; o] and call it a skew polynomial ring. If ¢ = 1 then we write R[z; 4]
and call it a differential polynomial ring. It is also natural to check whether
NClness can go up to skew and differential polynomial rings. However there
exist counterexamples to these cases as follows.

Example 2.7. There exists an NCI ring such that the skew polynomial ring
over it is not NCIL

Proof. The proof is essentially due to [11, Example 4.5]. Given a division ring
Dlet R = D& D, then R is NCI obviously. Define o : R — R by o(s,t) = (¢, s).
Then o is an automorphism of R. Let S = R|[z; o] be the skew polynomial ring
over R by o. S is semiprime by the argument in [11, Example 4.5].

On the other hand, S is right Noetherian by [18, Theorem 2.9] because
R is right Noetherian and o is an automorphism. Then every nil subring of
S is nilpotent by [14] and so S has no nonzero nil right or left ideals be-
cause S is semiprime. Thus N*(S) = 0, but N(S) # 0 as cab be seen by
((1,0)x)((1,0)x) = 0. Thus S is not NCI. O

Example 2.8. There exists an NCI ring such that the differential polynomial
ring over it is not NCIL.

Proof. The proof is essentially due to [1, Example 11], [6, Proposition 1.14], and
(11, Example 4.6]. Let R = F[x]/(2?) and define § : A — A by é(z + (z?)) =
1+ (2?), where F is a field of characteristic 2 and (z?) = F[z]z?. Then R is

NI (hence NCI) since N*(R) = F[x]z and Fla] >~ F. Next let S = R[z;d].
rlx

Then S is a simple ring by the [6, Proposition 1.14] and [11, Example 4.6],
obtaining N*(R) = 0. But z + (z?) is a nonzero nilpotent element of R and so
R is not NCI. L

For skew and differential polynomial rings we have similar results to Propo-
sition 2.6 when given rings are of bounded index of nilpotency.

Proposition 2.9. Let R be a non-reduced NCI ring. If R is of bounded index
of nilpotency, then the skew and differential polynomial rings are NCL

Proof. Since R is non-reduced and NCI, we have N*(R) # 0. But N*(R)
contains a nonzero nilpotent ideal of R by [8, Lemma 1.1] or [13, Lemma 5],
say N. Then N(z;o] and N{x;d] are nonzero nilpotent ideals in Rlx; o] and
R|[z; 6], respectively. O

(1)=(2) and (1)=(3) in Propositions 2.6, and Proposition 2.9 also hold
under the condition “N*(R) is nilpotent” in place of “R is of bounded index
of nilpotency”. Thus the results also hold under the following conditions.

Remark. N*(R) is nilpotent when a ring R satisfies each of the following cases:
(1) If R is a ring with right Krull dimension (in the sense of Gabriel and
Rentschler [6]) then N*(R) is nilpotent by [15];
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(2) If a ring R is right Goldie or satisfies ascending chain condition on both
right and left annihilators then N*(R) is nilpotent by [14] and [4, Theorem
1.34] respectively.

Let R be an algebra over a commutative ring S. Recall that the Dorroh
extension of R by S is the ring R x S with operations (ry,s1) + (re,s2) =
(r1 + 72,81 + s2) and (r1,81)(r2, 52) = (r172 + 8172 + 7182, $182), where r; € R
and s; € S.

Proposition 2.10. Suppose that R is an algebra over a commutative ring S
and let D be the Dorroh extension of R by S. Then R is NCI if and only if so
s D.

Proof. Let R be NCI. If N(R) # 0 then N(D) # 0 and D contains the nonzero
nil ideal N*(R) x 0; hence D is NCL

Next let N(R) = 0. If N(S) = 0 then D is also reduced, concluding the
NClness of D. So assume N(S) # 0. Then since commutative rings are
2-primal (i.e., N(S) = N.(S)), we get the nonzero nil ideal 0 x N,(S) =
0 x N*(S) =0 x N(S) of D. Thus D is NCL

Conversely suppose that D is NCI. Let N(S) = 0. If R is reduced then we
are done and so we assume N (R) # 0. Then N(D) # 0, and we get N*(R) #0
since D is NCI and § is reduced. Thus R is NCI. Next let N(S) # 0. Then
N(S)R is a nonzero nil ideal of R since R is an algebra over S. O

We end this note with raising following question:
Is R[xz] NCI when R is an NCI ring?
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