# KUCERA GROUP OF CIRCULAR UNITS IN FUNCTION FIELDS

JAEHYUN AHN AND HWANYUP JUNG

ABSTRACT. Let  $\mathbb{A} = \mathbb{F}_q[T]$  be the polynomial ring over a finite field  $\mathbb{F}_q$  and  $k = \mathbb{F}_q(T)$  its field of fractions. Let  $\ell$  be a fixed prime divisor of q-1. Let J be a finite set of monic irreducible polynomials  $P \in \mathbb{A}$  with  $\deg P \equiv 0 \pmod{\ell}$ . In this paper we define the group  $C_K$  of circular units in  $K = k(\{\sqrt[\ell]{P} : P \in J\})$  in the sense of Kucera [4] and compute the index of  $C_K$  in the full unit group  $\mathcal{O}_K^*$ .

### 1. Introduction

Let  $\mathbb{A} = \mathbb{F}_q[T]$  be the polynomial ring over a finite field  $\mathbb{F}_q$  and  $\mathbb{A}^+ = \{N \in \mathbb{A} : N \text{ is monic}\}$ . Let  $k = \mathbb{F}_q(T)$  be the field of fractions of  $\mathbb{A}$ . Let  $k^{ab}$  be a fixed algebraic closure of k. For any non-constant  $N \in \mathbb{A}$ , we denote by  $\Lambda_N$  the set of zeros of  $\rho_N(X)$  in  $k^{ab}$ , where  $\rho$  denotes the Carlitz module of  $\mathbb{A}$ . Then  $\Lambda_N$  is isomorphic to  $\mathbb{A}/N\mathbb{A}$  as  $\mathbb{A}$ -modules. The field  $k(\Lambda_N)$  which is obtained from k by adjoining  $\Lambda_N$  is called the N-th cyclotomic function field over k. Let us fix a generator  $\lambda_N$  of  $\Lambda_N$ . The extension  $k(\Lambda_N)/k$  is a finite abelian extension and its Galois group  $G_N$  is isomorphic to  $(\mathbb{A}/N\mathbb{A})^*$ . Explicitly there is an isomorphism  $\sigma: (\mathbb{A}/N\mathbb{A})^* \xrightarrow{\sim} G_N, A \mapsto \sigma_A$ , where  $\sigma_A(\lambda_N) = \rho_A(\lambda_N)$ . Under this isomorphism,  $I_{\infty} = \{\sigma_c : c \in \mathbb{F}_q\}$  is the inertia group of  $\infty$ . The fixed field  $k(\Lambda_N)^+$  of  $I_{\infty}$  is called the maximal real subfield of  $k(\Lambda_N)$ . For more details on the Carlitz module and the cyclotomic function fields, we refer to the Rosen's Book [6].

Let  $\ell$  be a fixed prime divisor of q-1. For any irreducible  $P \in \mathbb{A}^+$  with  $\deg(P) \equiv 0 \pmod{\ell}$ , it is well known that  $k(\sqrt[\ell]{P})$  is contained in  $k(\Lambda_P)^+$ . Hence we may regard such monic irreducible polynomial P as an analog of the prime number p with  $p \equiv 1 \pmod{4}$ . Let J be a finite set of monic irreducible polynomials P such that  $\deg P \equiv 0 \pmod{\ell}$ . Let  $K = k(\{\sqrt[\ell]{P} : P \in J\})$  and  $F = k(\sqrt[\ell]{D})$ , where  $D = \prod_{P \in J} P$ . Let us denote by  $\mathcal{O}_K$  (resp.  $\mathcal{O}_F$ ) the integral closure of  $\mathbb{A}$  in K (resp. in F). Let  $\mathcal{O}_K^*$  and  $\mathcal{O}_F^*$  be the group of units of  $\mathcal{O}_K$ 

Received March 27, 2006.

 $<sup>2000\</sup> Mathematics\ Subject\ Classification.\ 11R58,\ 11R29,\ 11R27.$ 

Key words and phrases. Kucera group, circular units, function fields.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2004-000-10007-0).

and  $\mathcal{O}_F$ , respectively. In this paper, following Kucera's idea [4], we define the groups  $C_K$  and  $C_F$  of circular units of K and F, respectively. We also give a bases  $B_K$  and  $B_F$  of  $C_K/\mathbb{F}_q^*$  and  $C_F/\mathbb{F}_q^*$ , respectively. By using these bases, we calculate the indices  $[\mathcal{O}_K^*: C_K]$  and  $[\mathcal{O}_F: C_F]$ .

## 2. Kucera group of circular units

Fix a prime divisor  $\ell$  of q-1. Let J be a finite set of monic irreducible polynomials  $P \in \mathbb{A}$  with deg  $P \equiv 0 \pmod{\ell}$ . It is well known ([1, Lemma 3.2]) that  $k(\sqrt[\ell]{P})$  is contained in  $k(\Lambda_P)^+$  for any  $P \in J$ . For any subset S of J let (by convention, an empty product is 1)

$$D_S = \prod_{P \in S} P, \quad \lambda_S = \lambda_{D_S}, \quad \Lambda_S = \Lambda_{D_S}, \quad K_S = k(\{\sqrt[\ell]{P} : P \in S\}).$$

For each  $P \in J$ , we denote by  $\sigma_P$  a fixed generator of  $Gal(K_J/K_{J\setminus\{P\}})$ . Following Kucera ([4, Sect.2]), let us further define

$$arepsilon_S = \left\{ egin{array}{lll} 1 & ext{if} & S = \emptyset, \ rac{1}{\sqrt[\ell]{P}} \ N_{k(\Lambda_S)/K_S}(\lambda_S) & ext{if} & S = \{P\}, \ N_{k(\Lambda_S)/K_S}(\lambda_S) & ext{if} & |S| > 1. \end{array} 
ight.$$

It is easy to see that  $\varepsilon_S$  is a unit of  $\mathcal{O}_{K_S}$ .

For any irreducible  $P \in \mathbb{A}^+$  and  $A \in \mathbb{A}$  with  $P \nmid A$ , we denote by  $(A/P)_{\ell}$  the  $\ell$ -th power residue symbol, i.e.,  $(A/P)_{\ell}$  is the unique element of  $\mathbb{F}_q^*$  such that

$$A^{\frac{q^{\deg P}-1}{\ell}} \equiv (A/P)_{\ell} \pmod{P}.$$

**Lemma 2.1.** Let S be any subset of J and  $P \in S$ . Then

$$N_{K_S/K_{S\backslash\{P\}}}(\varepsilon_S) = \begin{cases} (-1)^{\ell-1} & \text{if} \quad S = \{P\}, \\ (Q/P)_{\ell} \cdot \varepsilon_{\{Q\}}^{1-\operatorname{Frob}^{-1}(P,K_{\{Q\}})} & \text{if} \quad S = \{P,Q\}, P \neq Q, \\ \varepsilon_{S\backslash\{P\}}^{1-\operatorname{Frob}^{-1}(P,K_{S\backslash\{P\}})} & \text{if} \quad |S| > 2, \end{cases}$$

where  $Frob(P, K_{S\setminus\{P\}})$  denotes the Frobenius automorphism of P in  $K_{S\setminus\{P\}}$ .

*Proof.* At first, suppose that  $S = \{P\}$ . Since  $N_{k(\sqrt[\ell]{P})/k}(\sqrt[\ell]{P}) = (-1)^{\ell-1}P$  and  $N_{k(\Lambda_P)/k}(\lambda_P) = P$ , we have

$$\begin{array}{lcl} N_{K_S/K_{S\backslash \{P\}}}(\varepsilon_S) & = & N_{k(\sqrt[\ell]{P})/k}(\sqrt[\ell]{P})^{-1}N_{k(\Lambda_P)/k}(\lambda_P) \\ \\ & = & (-1)^{\ell-1}P^{-1}P = (-1)^{\ell-1}. \end{array}$$

Let us suppose that |S| > 1. Then by Lemma 2.3 in [3],

$$\begin{split} N_{K_S/K_{S\backslash\{P\}}}(\varepsilon_S) &= N_{k(\Lambda_{S\backslash\{P\}})/K_{S\backslash\{P\}}} \left(N_{k(\Lambda_S)/k(\Lambda_{S\backslash\{P\}})}(\lambda_S)\right) \\ &= N_{k(\Lambda_{S\backslash\{P\}})/K_{S\backslash\{P\}}} \left(\lambda_{S\backslash\{P\}}^{1-\operatorname{Frob}^{-1}(P,k(\Lambda_{S\backslash\{P\}}))}\right) \\ &= N_{k(\Lambda_{S\backslash\{P\}})/K_{S\backslash\{P\}}} (\lambda_{S\backslash\{P\}})^{1-\operatorname{Frob}^{-1}(P,K_{S\backslash\{P\}})}. \end{split}$$

Thus the lemma is proved if |S| > 2. If  $S = \{P, Q\}$ , then we have

$$N_{k(\Lambda_Q)/k(\sqrt[\ell]{Q})}(\lambda_Q) = \sqrt[\ell]{Q} \cdot \varepsilon_{\{Q\}}.$$

Thus it suffices to show that  $(\sqrt[\ell]{Q})^{1-\operatorname{Frob}^{-1}(P,k(\sqrt[\ell]{Q}))} = (Q/P)_{\ell}$ . Write

$$(\sqrt[\ell]{Q})^{\operatorname{Frob}(P,k(\sqrt[\ell]{Q}))} = c \cdot \sqrt[\ell]{Q}$$

for some  $\ell$ -th root of unity  $c \in \mathbb{F}_q^*$ . Then

$$c \equiv (\sqrt[\ell]{Q})^{q^{\deg P} - 1} = Q^{\frac{q^{\deg P} - 1}{\ell}} \pmod{\mathfrak{P}}$$

for any prime ideal  $\mathfrak{P}$  of  $\mathcal{O}_{k(\sqrt[\ell]{Q})}$  lying above P. Since c and  $Q^{\frac{q^{\deg P}-1}{\ell}}$  are in k, we have  $c \equiv Q^{\frac{q^{\deg P}-1}{\ell}} \pmod{P}$ . Thus  $c = (Q/P)_{\ell}$ , and so

$$(\sqrt[\ell]{Q})^{1-\operatorname{Frob}^{-1}(P,k(\sqrt[\ell]{Q}))} = (Q/P)_{\ell}.$$

This completes the proof.

Let  $K = K_J$ ,  $F = k(\sqrt[\ell]{D})$  with  $D = D_J$  and  $G_K = \operatorname{Gal}(K/k)$ ,  $G_F = \operatorname{Gal}(F/k)$ . Let  $C_K$  be the subgroup of  $\mathcal{O}_K^*$  generated by  $\mathbb{F}_q^*$  and by  $\{\varepsilon_S^{\sigma}: S \subseteq J, \sigma \in G_K\}$ . Let  $\eta = N_{K/F}(\varepsilon_J) \in \mathcal{O}_F^*$  and let  $C_F$  be the subgroup of  $\mathcal{O}_F^*$  generated by  $\mathbb{F}_q^*$  and  $\{\eta^{\sigma}: \sigma \in G_F\}$ .

Define  $B_K = \{ \varepsilon_S^{\sigma} : \emptyset \neq S \subseteq J, \sigma = \prod_{P \in S} \sigma_P^{a_P}, 0 \leq a_P \leq \ell - 2 \}$  and  $B_F = \{ \eta^{\tau^i} : 0 \leq i \leq \ell - 2 \}$ , where  $G_F = \langle \tau \rangle$ . Then we have

**Lemma 2.2.**  $\mathbb{F}_q^* \cup B_K$  and  $\mathbb{F}_q^* \cup B_F$  are systems of generators of  $C_K$  and  $C_F$ , respectively.

Proof. Let  $\sigma = \prod_{P \in J} \sigma_P^{a_P} \in G_K$  with  $0 \le a_P \le \ell - 1$ . Note that if  $P \notin S$ , then  $\varepsilon_S^{\sigma_P} = \varepsilon_S$ . Thus  $\varepsilon_S^{\sigma} = \varepsilon_S^{\prod_{P \in S} \sigma_P^{a_P}}$ . Hence it suffices to show that  $\varepsilon_S^{\sigma_{P}^{\ell-1}}$  is generated by  $\mathbb{F}_q^* \cup B_K$  for any  $P \in S \subseteq J$ . It easily follows from Lemma 2.1 and induction on |S|. Since  $N_{F/k}(\eta) = \prod_{i=0}^{\ell-1} \eta^{\tau^i} \in \mathbb{F}_q^*$ ,  $\mathbb{F}_q^* \cup B_F$  is a system of generators of  $C_F$ .

Let  $\widehat{G}_K$  and  $\widehat{G}_F$  be the character group of  $G_K$  and  $G_F$  with values in  $\mathbb{C}^*$ , respectively. For any  $\chi \in \widehat{G}_K$ , let  $S_{\chi} = \{P \in J : \chi(\sigma_P) \neq 1\}$ . Let  $\zeta_{\ell}$  be a fixed a primitive  $\ell$ -th root of unity in  $\mathbb{C}^*$ . For any  $P \in S_{\chi}$ , the integer  $a_{\chi,P}$  is defined by  $\chi(\sigma_P) = \zeta_{\ell}^{a_{\chi,P}}$  with  $1 \leq a_{\chi,P} \leq \ell - 1$ . For any  $\chi \in \widehat{G}_K$ , we define  $\varepsilon_{\chi} = \varepsilon_{S_{\chi}}^{\sigma_{\chi}}$  with  $\sigma_{\chi} = \prod_{P \in S_{\chi}} \sigma_P^{(\ell-1-a_{\chi,P})}$ . For any  $1 \neq \psi \in \widehat{G}_F$ , the integer  $a_{\psi}$  is defined by  $\psi(\tau) = \zeta_{\ell}^{a_{\psi}}$  with  $1 \leq a_{\psi} \leq \ell - 1$ . Let  $\eta_{\psi} = \eta^{\tau_{\psi}}$  with  $\tau_{\psi} = \tau^{(\ell-1-a_{\psi})}$ . Then we have

**Proposition 2.3.**  $B_K = \{ \varepsilon_{\chi} : 1 \neq \chi \in \widehat{G}_K \} \text{ and } B_F = \{ \eta_{\psi} : 1 \neq \psi \in \widehat{G}_F \}.$ 

Proof. For any  $\varepsilon_S^{\sigma} \in B_K$  with  $\emptyset \neq S \subseteq J$ ,  $\sigma = \prod_{P \in S} \sigma_P^{a_P}$  and  $0 \leq a_P \leq \ell - 2$ , there exists a unique  $\chi \in \widehat{G}_K$  such that  $\chi(\sigma_P) = \zeta_\ell^{(\ell-1-a_P)}$  if  $P \in S$  and  $\chi(\sigma_P) = 1$  if  $P \notin S$ . Thus  $\varepsilon_S^{\sigma} = \varepsilon_{\chi}$ . Therefore we have  $B_K = \{\varepsilon_{\chi} : 1 \neq 1\}$ 

$$\chi \in \widehat{G}_K$$
. For any  $1 \neq \psi \in \widehat{G}_F$ , we have  $0 \leq \ell - 1 - a_{\psi} \leq \ell - 2$ . Thus  $B_F = \{\eta_{\psi} : 1 \neq \psi \in \widehat{G}_F\}$ .

## 3. Computation of $[\mathcal{O}_K^*:C_K]$ and $[\mathcal{O}_F^*:C_F]$

In this subsection, we follow Kucera's argument in [4, Sect.3] to compute the unit-indices  $[\mathcal{O}_K^*: C_K]$  and  $[\mathcal{O}_F^*: C_F]$ .

Any place of K lying above the place  $\infty$  of k is called an *infinite place* of K. Fix an infinite place  $\infty_K$  of K. Then  $\{\sigma^{-1}\infty_K : \sigma \in G_K\}$  is the set of all infinite places of K. Let  $R'_K$  be the regulator of the set  $B_K$ . Then

$$R_K' = \left| \det \left( \operatorname{ord}_{\infty_K} (\varepsilon_{\chi}^{\sigma}) \right)_{\substack{1 \neq \sigma \in G_K \\ 1 \neq \chi \in \widehat{G}_K}} \right| = \frac{1}{[K:k]} \left| \det \left( \operatorname{ord}_{\infty_K} (\varepsilon_{\chi}^{\sigma}) \right)_{\substack{\sigma \in G_K \\ \chi \in \widehat{G}_K}} \right|.$$

Here we note that  $\varepsilon_{\chi_0}^{\sigma} = 1$  for trivial character  $\chi_0$ . For any  $\chi, \psi \in \widehat{G}_K$ , let the elements  $a_{\chi,\psi}$  be defined by the following matrix identity:

$$(a_{\chi,\psi})_{\chi,\psi\in\widehat{G}_K} = (\chi(\sigma))_{\chi\in\widehat{G}_K\atop \sigma\in G_K} \left(\operatorname{ord}_{\infty_K}(\varepsilon_{\psi}^{\sigma})\right)_{\substack{\sigma\in G_K\\ \psi\in\widehat{G}_K}}.$$

For any  $\chi \in \widehat{G}_K$ , let  $\overline{\chi} \in \widehat{G}_K$  be the inverse of  $\chi$  (i.e.,  $\overline{\chi}(\sigma) = \chi(\sigma)^{-1}$  for any  $\sigma \in G_K$ ).

**Lemma 3.1.** Let  $\chi, \psi \in \widehat{G}_K$ . Then

$$a_{\chi,\psi} = \begin{cases} [K:k] & \text{if } \chi = 1 \text{ and } \psi = 1, \\ 0 & \text{if } \chi = 1 \text{ and } \psi \neq 1 \text{ or } \\ \chi \neq 1 \text{ and } \psi = 1, \\ 0 & \text{if } S_{\chi} \nsubseteq S_{\psi}, \\ (q-1)[K:K_{S_{\chi}}]\overline{\chi}(\sigma_{\psi})L_{k}(0,\chi) & \text{if } S_{\chi} = S_{\psi}, \chi \neq 1, \psi \neq 1, \end{cases}$$

where  $L_k(s,\chi)$  is the Artin L-function associated to  $\chi$ .

*Proof.* We only prove the case that  $\chi \neq 1, \psi \neq 1$  and  $S_{\chi} = S_{\psi}$ . Since the conductor of  $\chi$  is  $D_{S_{\chi}}$ , we can consider  $\chi$  as a character of  $Gal(K_{S_{\chi}}/k)$ . Note that

$$\sum_{\sigma \in G_K} \chi(\sigma) \cdot \operatorname{ord}_{\infty_K}((\sqrt[\ell]{P})^{\sigma}) = \frac{\operatorname{ord}_{\infty_K}(P)}{\ell} \sum_{\sigma \in G_K} \chi(\sigma) = 0$$

for any  $P \in J$ . Let  $l_K : K^* \to \mathbb{Q}[G_K]$  be the logarithm map defined by  $l_K(x) = \sum_{\sigma \in G_K} \operatorname{ord}_{\infty_K}(x^{\sigma}) \sigma^{-1}$  for any  $x \in K^*$ . Then we have

$$\begin{aligned} a_{\chi,\psi} &=& \sum_{\sigma \in G_K} \chi(\sigma) \cdot \operatorname{ord}_{\infty_K}(N_{k(\Lambda_{S_\chi})/K_{S_\chi}}(\lambda_{S_\chi})^{\sigma_\psi \sigma}) \\ &=& \overline{\chi}(\sigma_\psi) \sum_{\sigma \in G} \chi(\sigma) \cdot \operatorname{ord}_{\infty_K}(N_{k(\Lambda_{S_\chi})/K_{S_\chi}}(\lambda_{S_\chi})^{\sigma}) \\ &=& \overline{\chi}(\sigma_\psi) \overline{\chi}(l_K(N_{k(\Lambda_{S_\chi})/K_{S_\chi}}(\lambda_{S_\chi})) = (q-1)[K:K_{S_\chi}] \overline{\chi}(\sigma_\psi) L_k(0,\chi), \end{aligned}$$

where the last equality follows from the equation (3.4) in [2].

To calculate the determinant of  $(a_{\chi,\psi})_{\chi,\psi\in\widehat{G}}$ , we needs a simple lemma. Let A and B be  $m\times m$  and  $n\times n$  matrices, respectively. We define A\*B as the  $mn\times mn$  matrix

$$\begin{pmatrix} a_{11}B & \cdots & a_{1m}B \\ \vdots & & \vdots \\ a_{m1}B & \cdots & a_{mm}B \end{pmatrix} \text{ with } A = (a_{ij}).$$

The operation \* is associative and det(A\*B) = det(B\*A). Moreover, we have the following which can be easily shown from the properties of determinant.

**Lemma 3.2.** 
$$\det(A * B) = \det(A)^n \det(B)^m$$
.

Let h(K) and  $h(\mathcal{O}_K)$  be the divisor class number of K and the ideal class number of  $\mathcal{O}_K$ , respectively. We compute the absolute value of determinant of  $(a_{\chi,\psi})_{\chi,\psi\in\widehat{G}_K}$ .

**Lemma 3.3.** 
$$\left| \det \left( a_{\chi,\psi} \right)_{\chi,\psi \in \widehat{G}_K} \right| = (q-1)^{([K:k]-1)} \ell^{\frac{|J|\ell^{|J|}}{2}} \cdot h(K).$$

*Proof.* Let us fix some linear ordering  $\prec$  on  $\widehat{G}_K$  such that

(i) 
$$S_{\chi} \subseteq S_{\psi} \Rightarrow \chi \prec \psi$$
,

(ii) if 
$$\chi \prec \psi \prec \varphi$$
 and  $S_{\chi} = S_{\varphi}$ , then  $S_{\chi} = S_{\psi} = S_{\varphi}$ ,

for any  $\chi, \psi, \varphi \in \widehat{G}_K$ . From Lemma 3.1, we see that  $(a_{\chi,\psi})_{\chi,\psi \in \widehat{G}_K}$  is a upper block-triangular matrix with respect to  $\prec$  and

(3.1) 
$$\begin{vmatrix} \det (a_{\chi,\psi})_{\chi,\psi \in \widehat{G}_{K}} \\ = (q-1)^{[K:k]-1}[K:k] |\det(\mathbb{B}_{K})| \prod_{1 \neq \chi \in \widehat{G}_{K}} [K:K_{S_{\chi}}] \prod_{1 \neq \chi \in \widehat{G}_{K}} L_{k}(0,\chi) \\ = (q-1)^{[K:k]-1} |\det(\mathbb{B}_{K})| h(K) \prod_{\chi \in \widehat{G}_{K}} [K:K_{S_{\chi}}],$$

where  $\mathbb{B}_K$  is the  $(\ell^{|J|} - 1) \times (\ell^{|J|} - 1)$  block-diagonal matrix with blocks  $\mathbb{B}_S = (\overline{\chi}(\sigma_{\psi}))_{\substack{\chi,\psi \in \widehat{G}_K \\ S_{\chi} = S_{\psi} = S}}$  for each  $\emptyset \neq S \subseteq J$ . To compute the  $\det(\mathbb{B}_K)$ , it suffices to compute the determinant of each block  $\mathbb{B}_S$ . Consider a block  $\mathbb{B}_S$  with |S| = 1, say  $S = \{P\}$ . The block is of the form

$$\mathbb{B}_{\{P\}} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ 1 & \chi(\sigma_P) & \cdots & \chi(\sigma_P^{\ell-2}) \\ \vdots & \vdots & & \vdots \end{pmatrix}_{\chi \in \widehat{G}_K, S_{\chi} = \{P\}}.$$

Enlarge this matrix to

$$\tilde{\mathbb{B}}_{\{P\}} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ \chi(\sigma_P^{\ell-1}) & 1 & \chi(\sigma_P) & \cdots & \chi(\sigma_P^{\ell-2}) \\ \vdots & \vdots & \vdots & & \vdots \end{pmatrix}$$

by adding  $(1 \cdots 1)$  to the first row, which corresponds to  $\chi = 1$ , and

$$^t(\cdots\chi(\sigma_P^{\ell-1})\cdots)_\chi$$

to the first column. The matrix  $\tilde{\mathbb{B}}_{\{P\}}$  can be considered as  $(\chi(\sigma))_{\substack{\sigma \in H \\ \chi \in \widehat{H}}}$  with  $H = \langle \sigma_P \rangle$  by exchanging rows and columns if necessary. Thus, as in the proof of [4, Theorem 1], we have

$$\left|\det\left(\tilde{\mathbb{B}}_{\{P\}}\right)
ight|=\left|H
ight|^{\frac{|H|}{2}}=\ell^{\frac{\ell}{2}}.$$

On the other hand, by adding all the other columns to the first column in  $\tilde{\mathbb{B}}_{\{P\}}$ , we have

$$\det\left(\tilde{\mathbb{B}}_{\{P\}}\right) = \ell \cdot \det\left(\mathbb{B}_{\{P\}}\right).$$

Thus  $|\det (\mathbb{B}_{\{P\}})| = \ell^{\frac{\ell}{2}-1}$ . For the block  $\mathbb{B}_S$  with  $|S| = d \geq 2$ , say  $S = \{P_1, P_2, \ldots, P_d\}$ ,  $\mathbb{B}_S$  becomes  $\mathbb{B}_{\{P_1\}} * \cdots * \mathbb{B}_{\{P_d\}}$  by exchanging rows and columns if necessary. Thus, by applying Lemma 3.2 repeatedly, we have

$$|\det(\mathbb{B}_S)| = \ell^{(\frac{\ell}{2}-1)(\ell-1)^{d-1}d}.$$

Therefore

(3.2) 
$$|\det(\mathbb{B}_{K})| = \prod_{\emptyset \neq S \subseteq J} \ell^{(\frac{\ell}{2} - 1)(\ell - 1)^{|S| - 1}|S|} = \prod_{d=1}^{|J|} (\ell^{(\frac{\ell}{2} - 1)(\ell - 1)^{d - 1}d})^{\binom{|J|}{d}}$$

$$= \ell^{(\frac{\ell}{2} - 1)\sum_{d=1}^{|J|} \binom{|J|}{d}(\ell - 1)^{d - 1}d} = \ell^{|J|(\frac{\ell}{2} - 1)\ell^{|J| - 1}}.$$

For any  $S \subseteq J$ , there are  $(\ell - 1)^{|S|}$  different characters  $\chi \in \widehat{G}_K$  with  $S_{\chi} = S$ . A simple computation shows that

(3.3) 
$$\prod_{\chi \in \widehat{G}_K} [K : K_{S_\chi}] = \ell^{\sum_{\chi \in \widehat{G}_K} (|J| - |S_\chi|)} = \ell^{|J|\ell^{|J|-1}}.$$

By combining (3.1), (3.2) and (3.3), the lemma follows.

When we speak about a basis of a group of units we always have in mind a basis of non-torsion part. Consider the set  $B_K$  of Lemma 2.2. Then

**Theorem 3.4.**  $B_K$  is a basis of  $C_K$ . Moreover

$$[\mathcal{O}_K^*: C_K] = \frac{(q-1)^{[K:k]-1}}{[K:k]} \cdot h(\mathcal{O}_K).$$

*Proof.* As in the proof of [4, Theorem 1], we have

$$\left| \det \left( \chi(\sigma) \right)_{\substack{\sigma \in G_K \\ \chi \in \widehat{G}_K}} \right| = \left| G_K \right|^{\frac{|G_K|}{2}} = \ell^{\frac{|J|\ell^{|J|}}{2}}.$$

Thus, by Lemma 3.3, we have

$$R_K' = \frac{1}{[K:k]} \cdot \frac{\left| \left( a_{\chi,\psi} \right)_{\chi,\psi \in \widehat{G}_K} \right|}{\left| \det \left( \chi(\sigma) \right)_{\sigma \in G_K, \chi \in \widehat{G}_K} \right|} = \frac{(q-1)^{[K:k]-1}}{[K:k]} \cdot h(K) \neq 0.$$

Hence  $R'_K$  is linearly independent, and so  $B_K$  is a basis of  $C_K$ . Moreover  $[\mathcal{O}_K^*:C_K]=R'_K/R(\mathcal{O}_K)$ , where  $R(\mathcal{O}_K)$  is the regulator of  $\mathcal{O}_K$ , and  $h(K)=h(\mathcal{O}_K)R(\mathcal{O}_K)$ . Thus the theorem follows.

The computation of the index  $[\mathcal{O}_F^*: C_F]$  is much the same as the one of  $[\mathcal{O}_K^*: C_K]$ . We only state the result leaving the proof to the reader.

**Theorem 3.5.**  $B_F$  is a basis of  $C_F$ . Moreover

$$[\mathcal{O}_F^*: C_F] = \frac{(q-1)^{[F:k]-1}}{[F:k]} \cdot h(\mathcal{O}_F).$$

### References

- [1] B. Angles, On Hilbert class field towers of global function fields, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996), 261–271, World Sci. Publ., River Edge, NJ, 1997.
- [2] J. Ahn, S. Bae, and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields, Trans. Amer. Math. Soc. **355** (2003), no. 5, 1803–1818.
- [3] J. Ahn and H. Jung, Cyclotomic units and divisibility of the class number of function fields, J. Korean Math. Soc. **39** (2002), no. 5, 765–773.
- [4] R. Kucera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), no. 1, 139–166.
- [5] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181–234.
- [6] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.

JAEHYUN AHN

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA

E-mail address: jhahn@cnu.ac.kr

HWANYUP JUNG
DEPARTMENT OF MATHEMATICS EDUCATION
CHUNGBUK NATIONAL UNIVERSITY
CHEONGJU 361-763, KOREA

E-mail address: hyjung@chungbuk.ac.kr