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KUCERA GROUP OF CIRCULAR UNITS
IN FUNCTION FIELDS

JAEHYUN AHN AND HWANYUP JUNG

ABSTRACT. Let A = Fy4[T] be the polynomial ring over a finite field Fq
and k = Fg(T) its field of fractions. Let £ be a fixed prime divisor of
g — 1. Let J be a finite set of monic irreducible polynomials P € A with
deg P = 0 (mod #¢). In this paper we define the group Ci of circular

units in K = k({VP: P ¢ J}) in the sense of Kucera [4] and compute
the index of Ck in the full unit group O%.

1. Introduction

Let A = F,[T'| be the polynomial ring over a finite field F, and AT = {N €
A : N is monic}. Let k = F,(T') be the field of fractions of A. Let k% be a
fixed algebraic closure of k. For any non-constant N € A, we denote by Ay the
set of zeros of px(X) in k%, where p denotes the Carlitz module of A. Then
A is isomorphic to A/NA as A-modules. The field k(Ax) which is obtained
from k by adjoining Ay is called the N-th cyclotomic function field over k.
Let us fix a generator Ay of Ay. The extension k(Ay)/k is a finite abelian
extension and its Galois group G is isomorphic to (A/NA)*. Explicitly there
is an isomorphism o : (A/NA)* 5 Gn,A — o4, where c4(An) = pa(An).
Under this isomorphism, I = {0, : ¢ € F,;} is the inertia group of co. The
fixed field k(An )™ of I, is called the maximal real subfield of k(Ay). For more
details on the Carlitz module and the cyclotomic function fields, we refer to
the Rosen’s Book [6].

Let ¢ be a fixed prime divisor of ¢ — 1. For any irreducible P € AT with
deg(P) = 0 (mod £), it is well known that k(v/P) is contained in k(Ap)*.
Hence we may regard such monic irreducible polynomial P as an analog of the
prime number p with p =1 (mod 4). Let J be a finite set of monic irreducible
polynomials P such that deg P = 0 (mod ¢). Let K = k({/P : P € J}) and
F = k(v/D), where D = [Ipcy P- Let us denote by Ok (resp. Op) the integral
closure of A in K (resp. in F'). Let O} and O3 be the group of units of O
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and O, respectively. In this paper, following Kucera’s idea [4], we define the
groups Ck and Cp of circular units of K and F, respectively. We also give a
bases Bk and Br of Ck /F; and Cr/F7, respectively. By using these bases,
we calculate the indices [0} : Ck| and [OF : CF].

2. Kucera group of circular units

Fix a prime divisor £ of ¢ — 1. Let J be a finite set of monic irreducible
polynomials P € A with deg P =0 (mod £). It is well known ([1, Lemma 3.2])

that k(+/P) is contained in k(Ap)* for any P € J. For any subset S of J let
(by convention, an empty product is 1)

DSZHP, AS = Apg, AS:ADS, Kszk({\t/}_D;PES}),
PeS

For each P € J, we denote by op a fixed generator of Gal(K /K s\ (py). Fol-
lowing Kucera ([4, Sect.2]), let us further define

1 if S=0,
1 .
€5 = 4 7P Niasy/ks(As) if S ={P},
\ Niag)/Ks(As) if |S]>1.

It is easy to see that €g is a unit of Og,.

For any irreducible P € At and A € A with P { A, we denote by (A/P),
the /-th power residue symbol, i.e., (A/P), is the unique element of F such
that

deg P _

AT = (A/P); (mod P).

Lemma 2.1. Let S be any subset of J and P € S. Then
[ (D! if §={P},
Nis/Koyp (€5) =4 (@/P)e- 515?0})_1(}3’}({@}) if S={PQ},P#Q,
ey e i1s1>2
“where Frob(P, K s\{p}) denotes the Frobenius automorphism of P in Kg\(p}.
Proof. At first, suppose that S = {P}. Since Nk;(ﬁ)/k(ﬁ) = (~1)*"'P and
Niap)/e{Ap) = P, we have

Nics /Kooy (E8) = Ny n(VP) T Niary/u(Ap)

= (-1)PlPp=(—1)

Let us suppose that |S| > 1. Then by Lemma 2.3 in [3],

Nis/Kory (€)= Ni(hsy(p1)/ Ko 1py (NVi(as) /(s 1)) (A5))

B 1—Frob™ *(P,k(A \{P}))
- Nk(AS\{P})/KS\{P} ()\S\{P} ; )

1-Frob™ (P, K
= Ni(as\(py)/Ks\(py (AS\{P}) (PEsvry),
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Thus the lemma is proved if |S| > 2. If § = {P, @}, then we have
Nitao) ko) (Xe) = V@ - £(qy.
Thus it suffices to show that (YQ)L-Frob ™ (PA(VQ) = (Q/P),. Write

(\/@)Frob (PE(7Q)) _ \/_

for some £-th root of unity ¢ € F;. Then

deg P _ qdeg P _1q
c=(/Q)TT =@ T (mod P)
degP 1 o
for any prime ideal B of C’)k (YD) lying above P. Since c and Q are in

deg P

k, we have c= Q™7 (mod P). Thus ¢ = (Q/P)y, and so

(Y/Q)I et PHYD) = (Q/P):.
This completes the proof. | D . []

Let K = K;, F = k(v/D) with D = D; and Gx = Gal(K/k), Gr =
Gal(F/k). Let Ck be the subgroup of O} generated by F; and by {€3: S C
J,o € Gk}. Let n = Ng/p(ey) € O} and let Cr be the subgroup of OF
generated by F; and {n” : 0 € Gr}.

Define Bk = {€% : 0 # S C J,o0 = [[peg0p ;0 < ap < E-——2} and
Br ={n" :0<i</{—2}, where Gp = (7). Then we have o

Lemma 2.2. 7 U BK and Fy; U Br are systems of generators of Ck and Cr,
respectively.

Proof. Let 0 = [[pe, 08" € Gk Wlth 0 <ap < ¥¢—1. Note that if P ¢ S5,

E 1
then 3" = eg. Thus €§ = 5HPES . Hence it suffices to show that g¥ is

generated by F; U Bi for any P € S C J. It easily follows from Lemma 2.1
and induction on |S|. Since Ng/,(n) = Hf én” cF;, F, UBF is a system of
generators of Cr. | O

Let Gk and G be the character group of Gk and Gp with values in (C*

respectively. For any x € G, let Sy ={P e J:x(op) #1}. Let (; be a fixed
a primitive £-th root of unity in C*. For any P € S,, the integer a, p is defined

by x(op) = Ce" " with1<a, p<£f—1. Forany x € GK, we define €, = 65
with oy =[] pc s, E 1~a.r)  For any 1 # 1 € Gp, the integer ay 1s defined
by (1) = ;¥ with 1 <ayp <L€—1. Let ny =7 with 7, = 7*"17%)_ Then
we have

Proposition 2.3. Bx ={s, : 1# x € @K} and Bp ={ny :1# Y € ép}

Proof. For any €% € By with ) # S5 C J,0 = [[pcgop and 0 <ap < L2,

there exists a unique y € Gg such that x{op) = Cé'g#l_ap) it P € S and
x(op) = 1if P ¢ S. Thus ¢4 = ¢,. Therefore we have Bx = {e5 : 1 #
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XEéK}. Foranyl#weép, we have 0 < £ —1-ay < £~ 2. Thus
Br ={ny:1#¢¥ € Gr}. -

3. Computation of [0} : Ck] and [0} : CF]

In this subsection, we follow Kucera’s argument in [4, Sect.3] to compute
the unit-indices [0} : Ck] and [0} : Cr}.

Any place of K lying above the place co of k is called an infinite place of
K. Fix an infinite place oog of K. Then {o~lock : 0 € Gk} is the set of all
infinite places of K. Let R’K be the regulator of the set Bg. Then

1
(K : k]

det (OrdooK (5;)) 1#0€Gr |

19&)(6@}:(

det (ordooy (€3)) ceox | -

XGGK

A
K=

Here we note that ¢ =1 for trivial character xo. For any x, P E G K, let the
elements a, , be defined by the following matrix identity:

(aXﬂ,D)X,q,e@K = (X(J)) x€C (OrdOOK (Efb)) €G-

oGy YEG |

For any x € Gk, let X € Gk be the inverse of x (i.e., X(¢) = x(¢)~! for
any ¢ € Gg).

Lemma 3.1. Let x, v € éK. Then

[ [K : k] ifx=1and ¥ =1,
0 ifx=1and Y #1 or
Ax,p = 3 x#1landy =1,
0 ifSXgS¢,
| (- DIK : Ks Jx(oy)Lx(0,x) i Sx =Sy, x # Ly # 1,

where Li(s,x) is the Artin L-function associated to x.

Proof. We only prove the case that x # 1,4 # 1 and S, = Sy. Since the
conductor of x is Dg_, we can consider x as a character of Gal(Ks, /k). Note

that
Z X(U) : Orde((\Vﬁ)d) — OrdOOEK(P) Z X(U) =0

ceGk ccGk
for any P € J. Let lx : K* — Q[Gk] be the logarithm map defined by
Ik(Z) =D scq, Otdooy (7)o" for any € K*. Then we have

Qyp = Z X(U)'OrdOOK(Nk(ASX)/st (/\SX)on-)
c€EGK

— Y(Oﬂw) Z X(J) - OI‘dooK (Nk’(ASx)/KSX (ASX)G)
ceG

= X(o4)X(Ux(Ni(as,)/Ks, (Xs, ) = (@ — DK : Kg [X(0%)Lr(0, X);
where the last equality follows from the equation (3.4) in [2]. 0]
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To calculate the determinant of (a, ) el Ve needs a simple lemma. Let

A and B be m x m and n X n matrices, respectively. We define A x B as the
mn X mn matrix
allB cve almB
: with A = (a;4).

amlB et ammB

The operation x is associative and det(A x B) = det(B % A). Moreover, we have
the following which can be easily shown from the properties of determinant.

Lemma 3.2. det(A * B) = det(A)™ det(B)™.

Let h(K) and h(Ogk) be the divisor class number of K and the ideal class
number of O, respectively. We compute the absolute value of determinant of

(a’x’?’b)XaﬂbE@K°

17
Lemma 3.3. ‘det (a,s) = (¢ — D)((KR-Dp—  p(K).

XaipeaK |

Proof. Let us fix some linear ordering < on Gk such that

(i) Sx € Sy = x <9,
(ii) if x <¢¥ < p and Sy, = Sy, then S, = Sy = S,

for any x, 1, € Gk. From Lemma 3.1, we see that (ax,9)y pedy 18 & upper
block-triangular matrix with respect to < and

'det (ax’d))Xﬂ#EéKl
= (q— DMK k)| det(Bk)| [ K:Ks ) ] Lr(0%)
1#x€G K 1#xeGk
= (¢— DR det(Bx)|h(K) ] (K : Ks,],

Xeéx

(3.1)

where By is the (¢/71 — 1) x (¢1/1 — 1) block-diagonal matrix with blocks Bg =
(7{(%,)) wwea, foreach® # S C J. To compute the det(Bg), it suffices to

compute the determinant of each block Bg. Consider a block Bg with |S| = 1,
say S = {P}. The block is of the form

Bipy=1|1 x(op) -+ x(op
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Enlarge this matrix to
i [ 1 1 1 - 1 \

Bipy =

X5 1 x(or) - x(0h?)
\ )

by adding (1---1) to the first row, which corresponde to x =1, and
Yoox(oB ) )y

to the first column. The matrix Ié{ P} can be considered as (x(0)) ser with
o _ - XEH
H = (op) by exchanging rows and columns if necessary. Thus, as in the proof

of [4, Theorem 1], we have

(11N

Idet (@{P})] — |H|‘%I ot

On the other hand, by adding all the other columns to the first column in E{ P}
we have

det (Iﬁ%{p}) = { - det (B{p}).

Thus |det (Bypy)| = £271. For the block Bg with [S| = d > 2, say S =
{P1, Py,..., Py}, Bs becomes Bp,y*: - -xByp,} by exchanging rows and columns
if necessary. Thus, by applying Lemma 3.2 repeatedly, we have |

|det(Bg)| = ¢(z-1E-1Dd

Therefore
| J|

(3.2 |det(Bx )| = H P1E R VICA Vil I H(f(%_l)(e_l)d_ld)(li')
' - p#SCJ d=1

_ (DT (M) -1 _ glai(g-ne =

For any S C J, there are (£ — 1)!5! different characters x € Gk with Sy = 8.
A simple computation shows that

33)  JJ [K:Ks,] = 5 xeaxITISD _giaie1=
By combining (3.1), (3.2) and (3.3), the lemma follows. - O

When we speak about a basis of a group of units we always have in mind a
basis of non-torsion part. Consider the set Bx of Lemma 2.2. Then

Theorem 3.4. Bk is a basis of Cx. Moreover

(q _ 1)[K:k]—'—1
(K : k]

(O : Cx] = h(Ox).
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Proof. As in the proof of [4, Theorem 1], we have

G k| | 71el ]
= |Gk =072

det (x(0)) vecx

x€EG K

Thus, by Lemma 3.3, we have

1 l(ax’w)X,¢€§Kl B (g~ 1)[K'-k]-1
K : k] ’det (X(U)) K : k]
Hence R} is linearly independent, and so Bk is a basis of Cx. Moreover

0% : Ck] = Ry /R(Ok), where R(Ok) is the regulator of Ok, and h(K) =
h{(Ox)R(Ox). Thus the theorem follows. O

R;(:[ .h(K) #0.

The computation of the index [O% : Cp| is much the same as the one of
0% : Ck|. We only state the result leaving the proof to the reader.

Theorem 3.5. By is a basis of Cr. Moreover
(q _ 1)[F:k]-~1
[F : k]

OF : Cp| = - h{OFp).
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