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SOME POPULAR WAVELET DISTRIBUTION

SARALEES NADARAJAH

ABSTRACT. The modern approach for wavelets imposes a Bayesian prior
model on the wavelet coefficients to capture the sparseness of the wavelet
expansion. The idea is to build flexible probability models for the mar-
ginal posterior densities of the wavelet coefficients. In this note, we derive
exact expressions for a popular model for the marginal posterior density.

1. Introduction

Recently, various Bayesian approaches have been proposed for nonlinear
wavelet thresholding and nonlinear wavelet shrinkage estimators. These ap-
proaches impose a prior distribution on the variability of the observed wavelet
coeflicients. The prior model is designed to capture the sparseness of wavelet
expansions. Then, the image is estimated by applying a suitable Bayesian
rule to the resulting posterior distribution of the wavelet coefficients. Different
choices of loss function lead to different Bayesian rules and hence to different
nonlinear wavelet shrinkage and wavelet thresholding rules, see Walnut [4].

The aim of this note is to derive a popular model for the posterior distribu-
tion of the observed wavelet coefficients. As stated above, we assume a prior
on the variability of the observed wavelets. It is also assumed in the prior
model that the wavelet coefficients of the true image are mutually indepen-
dent random variables and independent of the noise process. Let X denote the
random variable representing the observed wavelet coefficients. Arguably, the
most popular model for X is the white Gaussian noise model. Thus, assume
that X has the normal distribution with mean p and standard deviation A. We
need a prior for A\. For the past 40 to 50 years, the Student’s ¢ distribution
has been the most popular prior distribution because elicitation of prior in-
formation in various physical, engineering, and financial phenomena is closely

associated with that distribution, see Kotz and Nadarajah [2}]. So, if we assume
that

22 —(1+v)/2
p(A) (1+-—)

vV

Received May 11, 2006.
2000 Mathematics Subject Classification. 33C90, 62E99.
Key words and phrases. normal distribution, student’s ¢ distribution, wavelets.

(©2007 The Korean Mathematical Society
265



266 SARALEES NADARAJAH

then the joint posterior will be
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Hence, the marginal posterior of p will be
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The density in (1) is the same as that of the product XY when X and Y
are normal and Student’s t random variables distributed independently of each
other. Hence, calculating the marginal posterior of ;4 amounts to deriving the
exact distribution of XY

In this note, we derive the marginal posterior distribution given by (1), which
amounts to deriving the distribution of | XY | when X and Y are independent
random variables with the pdfs
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respectively, for —o0o < z < o0, —0 < y < o0, ¢ > 0 and v > 0. The
explicit expressions for the pdf and the cdf of | XY | are given in Section 2.
The calculations involve several special functions, including the complementary
error function defined by

erfc(x) = —-\/2?/ exp(—tz)dt,

the error function of an imaginary argument defined by

erfi(x) = % /Om exp (t7) dt,

the modified Bessel function of the first kind defined by

m
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the Kummer function defined by
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and the hypergeometric function defined by
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where (e)y = e(e + 1)---(e + k — 1) denotes the ascending factorial. The
properties of the above special functions can be found in Prudnikov et al. [3]
and Gradshteyn and Ryzhik [1].

2. Exact distribution of the product

Theorems 1 and 2 derive explicit expressions for the pdf and the cdf of | XY |
in terms of the Kummer and the hypergeometric functions.

Theorem 1. Suppose X and Y are distributed according to (2) and (3), re-
spectively. Then, the pdf of Z =| XY | can be expressed as
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for z > 0.

Proof. The general formula for the pdf of | XY | is

fo) = [ - {fx (T:ﬂ) +fx (—l—;—l)}fy(y)dy.

Since the given forms for fx(-) and fy(-) are both symmetric around zero, the
above can be expressed as

fz(z)
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where the last step follows by substituting w = 1/y2. The result of the theorem

follows by applying equation (2.3.6.9) in Prudnikov et al. ([3], volume 1) to
calculate the integral in (5). [

Theorem 2. Suppose X and Y are distributed according to (2) and (3), re-
spectwely. Then, the cdf of Z =| XY | can be expressed as
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for z > 0, where C denotes Euler’s constant and V(z) = dlogT'(x)/dx is the
digamma function.

(6)  Fz(z)

Proof. The general formula for the cdf of | XY | is

(7) Fz(z) = [: {FX (ﬁ) — Fx (_ﬁ)}fl’(y)dy-
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Considering

(8) Fx(z) = 1——-erfc( L )

(7) can be expressed as

Fz(2)
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where the last step follows by substituting w = 1/y. The result of the theo-

rem follows by using equation (2.8.3.5) in Prudnikov et al. ([3], volume 2) to
calculate the integral in (9). | O

9)

Using special properties of the hypergeometric function, one can derive sim-

pler forms for (6) when v takes integer values. This is illustrated in the corollary
below.

Corollary 1. [fv =1,2,...,10 then (6) reduces to
(z) — (C/merti (Vi)
(2) = (1//pi)vu (C + 2 — 2log 2) exp (u/2) Iy (u/2),
Fz(z) =732 (C+1) {Qﬁexp(u) + /werfi (vu) }
Fy(2) = 1/ (6v/7) Vi (3C + 8 — 6log 2) exp (1/2) {310 (w/2) + ulo (u/2)
+uly (u/2) }
Fy(z) =1/ (ﬁwf*/?) (2C + 3) {4’11,3/2 exp(u) + 10v/a exp(u) + 3v/merfi (V) }
Fz(z) = 1/ (120y/7) v (15C + 46 — 301og 2) exp (u/2) {2u210 (u/2)
+ 10uly (u/2) + 1515 (u/2) + 2u>T; (u/2) + 8uly (u/2) }
Fp(z) =1/ (907r3/2) (6C + 11) {66\/5 exp(u) + 52u®/2 exp(u) + 8u*/? exp(v)
+ 15+/merfi (/) }
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Fz(z) = 1/ (5040v/T) v/u (105C + 352 — 210 log 2) exp(u/2){105u[0 (u/2)

+ 40u?Ty (u/2) + 4uPTy (u/2) + 10515 (u/2) + 36u’l; (u/2)
+ 71uly (u/2) + 4u’l; (u/2) },

Fz(z)=1/ (1260%3/2) (12C + 25) {652u3/2 exp(u) + 200u®/% exp(u)

and

+ 16u™/% exp(u) + 558+/u exp(u) + 105+/merfi (v/u) }

Fz(2) = 1/ (120960/7) v/ (315C + 1126 — 630log 2) exp(u/2){1260uI0 (u/2)
+ 696uTy (u/2) + 136131y (u/2) + 8u*Iy (1u/2) + 94516 (u/2)

+ 5720211 (u/2) + 744ul; (u/2) + 128u°I; (u/2) + 8u*lh (u/2) }

where u = 2% /(20%v) and C denotes Euler’s constant.

w [
;
:
:
o _ "
T ' — v=1
~-- y=2
% ..... v=3
o & - - v=10
0
<
S
L)
T [ I T 1 T
0 1 2 3 4 5
2
FIGURE 1.

Plots of the pdf (4) for v =1,2,3,10 and ¢ = 1.
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Figure 1 illustrates possible shapes of the pdf (4) for a range of values of v.
Note that the shapes are unimodal and that the value of v largely dictates the
behavior of the pdf near z = 0.
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