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ADDITIVITY OF LIE MAPS ON OPERATOR ALGEBRAS

JIA QIAN AND PENGTONG LI

ABSTRACT. Let & be a standard operator algebra which does not contain
the identity operator, acting on a Hilbert space of dimension greater than
one. If @ is a bijective Lie map from & onto an arbitrary algebra, that is

B(AB — BA) = 8(A)3(B) — ®(B)B(A)

for all A,B € &/, then ® is additive. Also, if & contains the identity
operator, then there exists a bijective Lie map of & which is not additive.

1. Introduction

Throughout, for a Hilbert space J#, we write B(5¢) for the algebra of all
bounded linear operators on ##. Usually, a standard operator algebra on J#
will mean a subalgebra of B(J#) containing all finite rank operators. Let &
and % be two algebras or rings. A map & : & — £ is called a Lie map if it is
multiplicative with respect to the Lie product AB — BA, that is

B(AB — BA) = ®(A)®(B) — ®(B)®(A)
for all A,B € o

Characterizing the interrelation between the multiplicative and the additive
structures of a ring is an interesting topic. This question was first studied by
Martindale who obtained the surprising result that every bijective multiplica-
- tive map from a prime ring containing a nontrivial idempotent onto an arbitrary
ring is necessarily additive [10]. For operator algebras, the same problem was
treated in [1, 7, 15]. In the papers [2, 3, 8, 9, 11, 12, 13], the additivity of maps
on operator algebras which are multiplicative with respect to other products,
such as the Jordan product AB 4+ BA or the Jordan triple product ABA, were
investigated. Also, the papers [4, 5, 6, 14] studied the similar questions for
elementary maps and Jordan elementary maps on rings or operator algebras.

In this note, we shall study the additivity of Lie maps on operator algebras.
More precisely, it will be proved that every bijective Lie map on a standard
operator algebra 2/ which does not contain the identity operator, acting on a
Hilbert space 7 of dimension greater than one, is automatically additive. In
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particular, if dim .5# = oo and & is either the ideal of all finite rank operators
or the ideal of all compact operators in B(7#), then every bijective Lie map on
o/ is additive. Furthermore, we show that if o/ contains the identity operator,
then there must exist a bijective Lie map on </ which is not additive. |

It should be mentioned that Lu in [8] proved that a bijective Jordan map on
a standard operator algebra which is allowed to contain the identity operator,
is additive. Although the basic ideas used in our proof are similar to those in
8], some concrete techniques are new.

2. Result and Proof

Our main result reads as follows.

Theorem 1. Let # be a real or complex Hilbert space with dim € > 1,
o C B(€) be a standard operator algebra which does not contain the identity
operator I and % be an arbitrary algebra. If ® : & — P is a byective Lie
map, then ® is necessarily additive.

We shall organize the proof of Theorem 1 in a series of lemmas, in which
the notation of the theorem will be kept. Since dim.J# > 1, we can take a
non-trivial orthogonal projection P, which has finite rank. Then P; € &/. Put
P, =1 — P;. Note that P is not in &. Let &;; = P,/ P;, 1,7 = 1,2. Then

WZWH@WIQ@%l@Wm

which is the Peirce decomposition of /. This idea is essentially from Martin-
dale [10].

Lemma 1. &(0) =0.

Proof. 1t is obvious. [

Lemma 2. If A, B, S € & such that ®(S) = ®(A)+®(B), then for all T € &,
we have

(1) ®(ST — T'S) = ®(AT — TA) + &(BT — TB),

(2) ®(T'S — ST) = ®(TA — AT) + ®(T'B - BT).

Proof. Let T' € &/. Then
O(ST ~TS) =o(S)®(T) — (T)®(S)
= (2(A) + 3(B))®(T) - o(T)(2(A) + &(B))
= P(A)®(T) - &(T)®(A) + ¢(B)®(T) — ®(T)2(B)
= &(AT — TA) + (BT — TB).
So (1) holds. Similarly, we can prove (2). O]

In the following, the notation A;; will denote an arbitrary element in ;.

Lemma 3. Let S = 571 + S12 + 521 + S92 € .
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(1) If T;;S;1 = 0 for all Tiiy1 <4,9,k <2, then S;5 = 0. If Si;T;; =0 for
all T;;,1 <1,5,k <2, then Sk; = 0;

(2) If STz‘j — TijS C JZﬁgj fOT all T?;j, 1 S 1 7{—'_7 < 2, then Sji = 0;

(3) If STjj — TjjS c ﬁf{,;j fO‘T‘ all Tjj,l <1 75 ] < 2, then Sj?; = 0 and
Sji = AP; for some scalar X;

(4.) If STjj - TjjS - JZ%‘,L‘ fO’I" all Tjj,l S ) 75 j S 2, then S@j = 0 and
S;i; = AP; for some scalar X;

(5) If ST;; — T5;S € oy for all Tj;,5 = 1,2, then S = S = 0 for
1<i#j<2.

Proof. (1) It is {8, Lemma 2(ii)].

(2) By the hypothesis, we have obviously S;;T;; = P;j(ST;; — T;;S) = 0 for
all T;; with ¢ # j. Hence S;; = 0 by (1).

(3) Similar to (2), we can easily obtain that S;; = 0. Also, for every T};, we
have P;(ST;; — T;;S)P; = 0. Hence T;;S;; = S;;T;;, which implies that S;;
commutes all operators in B(P;5¢). It is well known that S;; = AP; for some
scalar A.

Similarly, we can prove (4) and (5). O

Lemma 4. For 1l <1 # 5 <2, we have
(1) ®(Ai; + Aij) = ©(Ai) + 2(Asy);
(2) ®(Aii + Aji) = ©(Au) + B(4;).

Proof. (1) We only give the proof of (1), and for (2) the proof goes similarly.
Since @ is surjective, there is S = S11 + S12 + S21 + Saog € & such that
®(S) = P(A;) + P(Ai5).
For any T};, by Lemma 2 and noticing that ¢ # j, we have
(ST —T4;5) = P(AuTy; — Tj5Au) + (A Ty — Tj54i5)

= ®(0) + ®(Ay;T};) = ®(AyTy;).
It follows from the injectivity of ® that
(1) STjj — TjjS = A?;jTjj < &fzj
So Sj; = 0 and S;; = AP; for some scalar A by Lemma 3(3). Also, from (1) we
get that S;;T;; = A;;T;; for all T};, and hence S;; = A;; by Lemma 3(1).

For every T;;, applying Lemma 2 we can similarly get that ®(ST;; —73,5) =
®(A;;T;;), which implies ST;; — 13;5 = Ay T;;. Therefore
ATy = P(STy; — T3;8) Py = SuTi; — TS5 = SuTi; — N1,
and so S;; = A;; + AP;. Thus
S = Su+ S?;j + Sj?; -+ Sjj

= (Aiz' + )\Pi) + Aij + 0+ /\Pj

= A, +A¢j + Al
Since I ¢ &7/, we have A = 0. This proves S = A;; + A;;, as required. [
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Lemma 5. ®(T;;A;; + Bi;S;;) = ®(TiAij) + ©(B;;S;;) forl <i#j <2

Proof. Making use of Lemma 4, we have
O(TiiAij + Bi;Sj5) = ®((Tii + Bij)(Asj + Sj5) — (Aij + 855)(Tai + Byj))
= ®(T + Bi;)2(Aij + 555) — ®(Ay; + 555)(Tii + Byj)
= (®(Tu) + ©(Bi;))(P(Aij) + ©(S;5)) — ((Ay) + 2(S5;))(2(Tii) + 2(Bij))
= (®(Ti:)®(Asij) — ®(Ai; )(T2i)) + (P(T3:)2(S;5) — ®(5;;)2(Ts))
+ (B(Bi; )2(Ai;) — ©(As5)P(Bij)) + (B(Bij ) 2(S55) — 2(S;5)®(Byj))
= ®(T; Ay — AijT) + (TS5 — S55T%)
+ ®(Bij Aij — AijBij) + ®(Bi;Sj; — S5 Bij)
= O(T;Aiz) + ®(Bi;S;5),
completing the proof. O
Lemma 6. ®(A;; + Bij) = ®(A;;) + @(By;) for 1 <i#j <2.
Proof. Choose S = S11 + S12 + S21 + S22 € & such that

(2) ®(S) = ®(A;;) + ©(B;j).

For any T3;,T;;, by Lemmas 2, 5, we have

(3) O(ST;; — T5;8) = B(AiTy;5) + B(Bi; Tjj),
and |

O(T;;ST;; + T;;ST)
= ®(TulSTy; — Tj;S) — (STy; — T5;8)Tu)
= O(TuwAyTy; — AiiT;T) + ®(TuBiyTj; — BijTi5T)
= (I)(T%A%JTJJ) + (I)(TnBzJ TJJ)
= O(T(A4y + B;;)Tj;)-
Thus T@iSTjj —+ Tjj STM = TM(A?,J —+ B@'j)Tjj. Multiplying this equality by P, i
from the left, we get 7;;5T;; = T;;(Ai; + Bi;)Tj;. It follows from Lemma 3(1)
that S?;j = A,,;j + Bij.

For every T;;, applying Lemma 2 to (2) and (3) respectively, we get

STij — T?;jS — 0,
(8T;5 — T5;5)T3; — Ty (5T — Ty;5) = 0.

It follows easily that 5;; = 0 and T35 (STEJ — TjjS) = 0. Hence 5;;T;; = T5;S;;
by Lemma 3(1), and so there exists a scalar A such that S,;; = AP;. Also,

By Lemma 3(1) again, we have S;; = AP,. Therefore,
S = AP, + (A«gj +B@j)+0—|—/\Pj :A@j + B + Al



ADDITIVITY OF LIE MAPS ON OPERATOR ALGEBRAS 275

Recalling that I ¢ &/, we have A = 0 and hence S = A;; + B;;. This completes
the proof. [

Lemma 7. ®(A;; + B;;) = ®(A;) + ®(By;) fori=1,2.
Proof. Choose S = S11 + S12 + S91 + Soo € & such that
(4) D(S) = P(Ay) + B(By).

Take j # ¢. For any T};, applying Lemma 2 to (4) we obtain $T;; — T;;S = 0.
Thus, by Lemma 3(3)-(4) we have

Sij = D4 — 0 and Sjj = )\Pj

for some scalar A. Further, for any T;;, applying Lemmas 2, 6, it follows from
(4) that

®(ST;; — T3;S) = ©(AuTi;) + O(BiuTi;) = ©(AiTi; + BiiTij).
Thus ST;; —T3;S = ATy + By T,;. Hence
SiiTi; — ATy = SuTi; — TS5 = Pi(STi; — Ti;S) Py = (Au + Bis) Ty,
from which we get S;; = Ai; + By; + AP; by Lemma 3(1). So
S =(Aii+ By + AP;) + 0+ 0+ AP; = Ay + By + Al
Since I ¢ &/, we have A =0 and S = A;; + B;, as desired. O
Lemma 8. ®(A;; + Agg) = P(A11) + D(Aa).

Proof. Choose S = S11 + S12 + S21 + S22 € & such that
(5) ®(S) = P(A11) + B(A2).

For any T11, by Lemma 2 we get ST11 — T115 = A11T11 - T11A11, which implies
T11512 = 521T11 ={. So 812 = 521 = 0. AISO, we have

T11(S11 — A11) = (S11 — A11)T11

and hence there exists a scalar A such that S1; = 411 + \P;.
For any T3, applying Lemmas 2, 6, we obtain from (5) that

®(ST12 — T128) = ®(A11T12 — Ti2A11) + P(AeTi2 — T12A22)
= O(AnTho) + ®(—Thi2A92) = P(A11T12 — Th2A2).
It follows that STi5 — 1155 = A11T12 — Th2A29. Hence
S11T12 — T12820 = A11Tho — Ti2 A9,

in which putting A;; + APy for S11, we have Syo = Ags + AP, by Lemma 3(1).
So

S = (A11 + /\Pl) + 0+ 04 (Aog + AP) = A1 + Aoe + AL
Then S = Aj1 + Agg since I ¢ &7, completing the proof. O

Lemma 9. ®(A2 + Ag1) = ®(A12) + (491).



276 JIA QIAN AND PENGTONG LI

Proof. Choose § = 511 + S12 + S21 + S22 € & such that

For any T2, by Lemma 2 one has
(7) STio —Th2S = Aa1Thio — T12421.

Multiplying this equality by P; from the right, we get 77951 = T12Agi, which
implies S97 = Ag9;. With the same discussion for 75, we can get S1o = Ajo.
For any Tj1, by Lemma 2 we get from (6)

®(STy; — T115) = ®(—T11A412) + P(A21T11).
Moreover, for any 751, applying Lemma 2 to the above equality, we have
T118T51 + 151 (ST — T11S) = T11 A12T%1 — To1T11 Ars.

Multiplying this equality by P; from the right and noting that S12 = Ao, we
get T21(5T11 - TnS)Pl = 0. Then 511T11 = THSU, and so 811 — APl for
some scalar A. Also, observing that S11712 — 112522 = 0 from (7), we have
Sag = APs. So § = A12 + A21 + AI. Hence S = Aj3 + Ao since I € . O

Lemma 10. (I)(All + A12 + A21) = (I)(AH) + (I)(Alg) + (I)(Azl)

Proof. Let § = S11 + S15 + S21 + So2 € &7 such that
@(S) = (I’(All) + @(Alz) + (I)(Agl)
Then by Lemmas 4, 9, we have that

(8) ®(S) = ®(A11 + A1) + P(A21),

(9) ®(S) = ®(A11 + A21) + B(A12),
(10) ®(S) = ®(A11) + P(A12 + Any).

For any 751, by Lemma 2 we get

(11) STo1 — T218 = A12T21 — T21(A11 + A12)

from (8). Multiplying this equality by P, from the left, we get S1275; - A19T
and so Sjo = Ais. Similarly, one has Sp; = Aoy from (9). Further, for any Ths,
applying Lemma 2 to (10), we obtain

SToy — T3S = A1oT5s — To2A9.

Multiplying this equality by P, from both sides, we see that SaoT90 — T22 S22 =
0. It follows that there exists a scalar A such that Sog = AP». Also, multiplying
(11) by P, from the left and by P; from the right respectively, we get

Sa20T51 — 151511 = —T21A11.

So Sll = All -+ )\Pl Thus § = All + Alg + Agl + Al and consequently,
S = A1 + Ajz + Az, The proof is complete. O

Lemma 11. (I)(All +A12 +A21 +A22) = (I)(All) +(I)(A12) -I—(I)(Azl) -|-(I)(A22).
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Proof. Suppose that S = S11 + S12 + 591 + Soo € & are such that
O(S) = ®(A11) + P(A12) + P(A21) + P(A22).

Then by the Lemma 10, we can write
(12) ®(S) = (A1 + A1z + Ag) + P(As2).
For any 7141, by Lemma 2 we see that
STy1 — T11S = (A11 + A21)Th11 — Tii(An + Ar2).

By multiplying this equality by P, from the left and the right respectively, it
is easily seen that S; = Ao and Si2 = A, Also, multiplying this equality
by P; from both sides, we can get (S11 — A11)T11 = T11(S11 — A411). It follows
that there exists a scalar A\ such that S11 = A1 + APy,

For any Tj,, applying Lemma 2 to (12), we get

Q(STyo — T128S) = P(A11T12 + Ao1T1o — TioA21) + ®(—T12A09).

Again, for any 771, by Lemmas 2, 4 and 6, we obtain from the above equality
that

O(—T125T1; — T115Th2 + Th11Th25)
—T19 ATy — T11 A Tho + T11T12A21) + @(T11T12A92)

(
(
(T11T12A21 — T12A01Th1) + ®(—T11A11T12) + ©(T11T12A22)
(
(

T11T12A01 — T1oA21T11) + (T11T12 A2 — T11A11Th2)

o
d
o
Q(Ty1T12A21 — T19A21 T + T11Ti2Aze — T11A11Th2).

It follows that

T11T128 — T195Ty) — 1115712
= T11T12A91 — T12Ao1T11 + T11T12A22 — 111 A11 T2,

in which multiplying by P from the right and making use of S11 = 411 + APy,
we get Sop = Agg + AP, Hence S = Aj1 + A1g + A21 + Aaa + AL So S =
Ai1 + A1z 4+ Aoy + Ao because of T ¢ o7, completing the proof. O

Proof of Theorem 1. Let A, B € &/. By writing A = Ay + A2+ A1 + Ago and
B = Bi1+ Big + Bay + Bay, then it is easily seen that ®(A+ B) = ®(A)+ ®(B)
making use of Lemmas 6, 7 and 11. We are done. | o

Theorem 1 has the following obvious corollary.

Corollary 1. Let 57 be a real or complex Hilbert space with dim 7 = oo,
and &f C B(J) be either the ideal of all finite rank operators or the ideal of

all compact operators. Then every bijective Lie map from &/ onto an arbitrary
algebra 1s additive.
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We shall conclude by considering the case that &/ contains the identity
operator I in Theorem 1. In this case, define the map @ : &/ — & by

BA 2A, if AelFI,
(4) = {A, otherwise,

where I denotes the real or complex field. Then

(1) ® is bijective;

(2) @ is not additive;

(3) ® is a Lie map.

In fact, (1) and (2) are obvious. Let us prove that (3). Suppose A, B € &.
We distinguish two cases.

Case 1. At least one of A, B is in FI. Then clearly, AB — BA =0 and

®(AB — BA)=0=®(A)®(B) — ®(B)®(A).
Case 2. Both A and B are not in FI. If AB — BA ¢ FI, then
®(A)®(B) - ®(B)®(A) = AB—- BA = 9(AB — BA).

Suppose now that AB — BA = \I for some A € F. We then have 0(AB) =
A+ o(BA), where () denotes the spectrum of an operator. It is well known
that 0(AB) U {0} = o(BA) U {0}. This leads to A = 0 and hence

®(AB — BA) =0 = AB — BA = ®(A)®(B) — B(B)D(A).

So ® is a Lie map.
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