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BEREZIN TRANSFORMS AND TOEPLITZ OPERATORS ON
THE WEIGHTED BERGMAN SPACES OF THE
HALF-PLANE

S1 Ho KANG

ABSTRACT. We deal with Bergman functions defined on the half-plane.
We study integral operators, and some relationship between Berezin trans-

forms and Toeplitz operators, and also show that some Berezin transforms
are Mobius invariant.

1. Introduction

Let H = {z + iy : y > 0} be the half-plane in the complex plane C. For
l1<p<ooandr> —%, the weighted Bergman space BP" of the half-plane is
the space of analytic functions in L?(H, dA, ), where dA is the area measure on
H, K(z,w) = ——;(Ziﬁm, and dA,(z) = 2r + 1)K(z,2) " "dA. In fact, K(z,-)
is the reproducing kernel for B??(see [1]) and K(z,-)'*" is the reproducing
kernel for B>"(see [4]).

Section 2 of this paper contains the linearity and continuity of point evalu-
ations, that is, they belong to (BP")* and the boundedness of each element of
BP'" implies that BP'" is a closed subspace of LP(H,dA,).

In Section 3, we define the Berezin transform. To do so, we need the nor-
malized reproducing kernel. We show that the normalized reproducing kernel
converges weakly to 0 in B*" as Imz — 0 and we deal with some kernel op-
erators. Moreover, we introduce Toeplitz operators with symbol which is an
element of B%" U L™,

We study integral operators, and some relationships between Berezin trans-
forms and Toeplitz operators. We also show that some Berezin transtorms are
Mobius invariant and we get some quantity of Berezin transforms. Throughout
this paper, we use the symbol A < B (A =~ B, resp.) for nonnegative constants

A and B to indicate that A is dominated by B times some positive constant
(A< B and B < A, resp.).
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2. Reproducing kernels

In this section, we deal with the point evaluation map and the closedness of
BP". To do so, we study the boundedness of each element of BP".

Proposition 2.1. Suppose r > —-%— and z =z +1y € H. Then

s () (WyQ)T 5l

for every f € BP",

Proof. The mean-value property and Jensen’s inequality imply that

p 1 |
T < 286G Joes

If w € B(z,%) then %y > Imw > ¥ and hence K(w,w) =

fIPdA.

1 < 1
dn(Imw)? ~ ©y?

Hence

(w)

e )

4

:(2‘T'—|-1)( Y )1—}-7‘ “ f Hp 7
that s, |/(2)] 3 ((27" + 1)?ﬂy2)1+?~)5 | f llp, for all f € BP". 0

Theorem 2.2. For fized z € H, the point evaluation A, defined by A Af) =
f(2) for all f € BP" is continuous on BP".

Proof. Let z = x + ty. By Proposition 2.1, for any f € BP'",

1O S (s mrrrs) 11 e
~AN2r + 1 (my?)ttr P
4 » .
and hence || A, ||< ((27’ n 1)(7ry2)1+?“) , that is, A, is an element of (BP'")*.
L]
Proposition 2.3. For1 <p < o andr > —~— , BP'" 1s a closed subspace of

Lp:T,

Proof. Take any Cauchy sequence {f,} in BP". Since LP" is complete, { fn}
converges to f for some f € LP". By Proposition 2.1, { f,} converges uniformly
on each compact subset of H and hence {f,} converges uniformly on compact
subsets of H to a function g that is analytic on H. Since {f,} converges to f
in LP", there is a subsequence {f,, } of {f,} which converges to f pointwise
almost everywhere on H. This implies that f = g almost everywhere on H.

Hence f € BP'". [
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Since BP'" is a closed subspace of LP", B*>" is a Hilbert space with in-
ner product (f,g), = [, f z)dA,(z). Theorem 2.2 states that for each
z € H, the pomt evaluatlon A is a bounded linear functional on B%" and
hence the Riesz representation theorem implies that there exists a unique
function h in B*" such that A,(f) = (f,h), for all f € B%". In fact,
h(w) = K(z,w)'t" = (_ L _)Q)HT (see [4]).

m(z — W

3. Integral operators, Berezin transforms, and Toeplitz operators

Section 3 deals with some kernel operators and the Berezin transform. To
do so, for —% <r, let

whenever 3 > 0.

Theorem 3.1. I3(z) =~ i )ﬁ
m 2

Proof. Let z = x+iy and w = s+it be in H. Since K(w,w)™" = (7(2Imw)?)",

L(z) = /H bz_wiﬂwwdm(w)

Am)" (Tm w)?"
/H ?Z _)@(|2+2r)+6 dA(w)

dA(w)
o |2 —w*tP

/ / 1 Bdsdt
0 Jooo {(x—8)2+(y+1)2}'T2
o oo y+t 1
dsdt
/0 LO -2+ L2 (y+pP

[
o (y+t)t+h

A\

l

IA

2

11 g
- B(y—kt)ﬁ}o
11

T yP (Imz)?

Since z = x + iy and £ > 0, the Euclidean ball B(z, £) is contained in H
and hence

Iﬁ(z) — L|Z”@_‘12+2T+6dAr(w)
(5™
L( )y2+2fr+6dA( )

LV
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] y~2 P dA(w)
B(z,%

&

_ 1 CAY:
- y2+B7T(§)
1 1
Ty (Imz)f
1
Hence I3(z) =~ Tz O

Theorem 3.2. For any real numbers a and b, we define integral operators T
and S by

m’wb
T1() = (2 | —CE f(wdAw

and
(Im w)?®

5f(z) = (Im z)* |z — w2t

(w)dA(w).
Suppose 1 < p < o0 and —pa < 2r < pb. Then T is bounded on LP".

Proof. Since the boundedness of S implies that of T', it is enough to show that
S is bounded on LP". Define h(z) = (Imz)®. Then A is a positive measurable
function on H and

m 2)(Imw)®
/H IE:I— m)lzgrla+b+)2r h(w)?dA, (w)

m w)59 b
_ (Imz)a/H Imw)™ ™2 4 (w).

'z — 7&5'2+a+b+27‘ r

Since a + b = sq + b+ § implies 3 = a — sq,

(Im 2)2(Im w)®
- Iz — ml2+a+b+2r

On the other hand,

/ (Im 2)*(Im w)® h(2)PdA,(2)
H

lz — _w’2+a+b

h(w)?dA, (w) ~ (Im 2)°? = h(z)4.

Im2)? s
< (mw)y /H |z — (@"12+2+b+2r (Im 2)*FdA,(2)

-~ ) (Im z)a+sp—|—2r
~ (Imw) /H o e dArJr#R(z)

1
~ b _ p
According to Theorem 3.1, these estimates are correct if s¢ +b > 0, a —

b
sq >0,and a+sp+2r >0, b—sp—2r > 0 and hence —E§s<g and
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—a — 2r b—2r
<s<
p p

—p+1 2 2
alzp+1) < rta ifa,ndonlyifE > — T+a.If2r < pb= p—1
p p q p qg—1
then 2r(q — 1) < bq if and only if —2r < (b — 2r)q. Since —pb < —2r, —pb <
b b—2 b 2 b— 2
(b — 2r)q and hence 3 < ~. Thus [—— —,E) N {-—— 'r;—a, ’ T) + (.
Y q
By Schur’s Theorem, S is bounded on LP'". This completes the proof. L
(2 Im w)?
7|z — w4

. We note that —pa < 27 if and only if —pa+a < 2r+a if

and only if

14r
Proposition 3.3. For each w € H, / ( ) dA,(z) = 1.
H

Proof. Take any w € H. Then

/H ( (2 Imw)? )1+'rdAT ()

|z — w|*

= @) [ () (- ) dA()

1
— _ 1\ 1+ 2(147r) 1+r
(—1)M+7 (2 Tm w) /H o K 2) A )
= 1.
[l
Since K(w,w) = . , for each w € H, we define
(2 Im w)?
K(z,w) \1*+7
kw(z) = ( ) .

VK (w,w)

Then we have the following :

Corollary 3.4. For each w € H, ky, is a unit vector in B%", that is, ky, is a
normalized reproducing kernel.

Proof. Since K(z,w) = —71'(2:1— ) and /K (w,w) = ﬁlemw’
(B bu)r = /H k(=)o (2)dA, (2)
_ /H ('II‘; ((ju% )1+TdAr(z)
muw)?\ 147
— /H (fji _%?]4) dA,(z) = 1.

O

Suppose T is a linear operator on B*”. We define T(z) = (Tk,, k), for
all z € H, where k, is the normalized reproducing kernel. Since B?7 is a
closed subspace of a Hilbert space L*", there is a unique orthogonal projection
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P : L»" — B?" such that P(f = [ f(2)K(w, 2)'T"dA,(2) for all f €
L?7. The reproducing kernel property of K(w,z)'*" implies that P|gzr = I.

Moreover, we can extend P to LP" whenever 1 < p < oo and r > —% and

P : LP"™ — BPT" ig a bounded linear operator (see[4]). For f € L, we
define Ty : B*" — B%" by T4(g) = P(fg) for all g € B%". Since f - g is
in L*", Ty is well-defined. Since B?>" N L* is dense in B> (see Lemma 3.7),
for any f € B>" and any w = s + it in H, there is a sequence {f,} in B>" N

L*> such that lim f, = f in B®" and hence / f(z K(w,z)'T"dA, (2)

/ Fa(2)9(2)K (w, 2) T d A, (= / (= D Ng( K (w, 2+ d A (2)

— 0 as n — oo because the 1ntegral is dominated by ||fn — fll2.»/l9ll2,» and
we can define T (g / f(2)g(2)K (w, 2)'T"dA,(2). Let X = L°° U B?".

Then for any f € X, we can define Ty : B>" — B?" by T¢(g) = P(fg) for all
g € B Moreover, T is a bounded linear operator and called the Toeplitz
operator with symbol f. We consider the Berezin transform T of Toeplitz
operators I'. In particular, for any Toeplitz operator with symbol f, we write
Tf = f which is called the Berezin transform of the function f.

Proposition 3.5. For any f € X, Ty(2) = f(2) = /H F(w)|k, (w))*dA, (w).

Proof. Since k,(w) = ( — \/;(im_zz)z ) Hr,
Ty(2) = f(2)
= (Ttky, k,)yr = ; Tek, (w)k,{(w)dA,(w)

- / P(fk.) (w)k- (w)dA, (w)
_ / / F Ok (K (w, )+ dA, (k. (w)d A, (w)

_ /H / ol b2 ))HTK(w,t)m( KI(;EJ;;))”TdAr(t)dAr(w)

_ / / f t)K ¢ Z)1+TK(’U) t)l-i»’rK(,w z)l—l—'rdA ()dA ( )

K(z z)1+r

- K(Z z 1+'r_/ f(t)K(taz)l_H/ K(wat)l_l_rK(waz)1+TdAT(w)dAT(t)

~ K z)1+ / fOK ()" K (2,8) "7 dA (1)

~ w [ OKE ) RGaAL0
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| f@lk(w)PdA )
Thus one has the result. o
Corollary 3.6. If f € B>" then Ty(z) = f(2) = f(2).
Proof. It is immediately from the fact that

/ F)K(w, )" K (2, w)T"dA, (w) = f(2)K(z,2)'"".

Lemma 3.7. B2" N L>® is dense in B%".

Proof. Take any € > 0 and any f € B*" For each § > 0, let fs5(z) = f(z + ¢9)
for all z € H. Take any w in H. By the mean-value property,

fs(w) = flw+ i) =

, fdA.
|B(w + 61, 6)| \/;g(w+(5i,5)

Jensen’s inequality implies that

2 1 2
fs(0)? < s 1 B0 =5 1

Hence f5 is bounded on H. Since fs € B®>" and C.(H) is dense in L?", there
is g € C.(H) such that || g — f ||2,»< €. Since g is uniformly continuous on H,
there is 09 > 0 such that for 0 < § < &y, || g5 — g |l2.-< €. Suppose 0 < § < do.
Since || f5 = g5 2w < | £~ lzr < € | fs— £ low < Il f5 — 95 o + |
gs—9g ll2r + 1l g— f ll2.r < 3¢ and hence %i_r)r(l) | fs — f l|l2.-= 0. Thus B4" N L*®

is dense in B2". O]

Proposition 3.8. Suppb.se z € H. Then k, converges weakly to 0 in B*>" as
Imz — 0.

Proof. Take any f in B*" N L. Then
Fk)e = [ R, ()

_ ZZW/f K(w, 2) 7 d A, (w)

- \/K(z Z)1+7 /H flw) Kz w)™"dAr(w)

= (Vm2Im2)""" f(2).
Since lim 0(\/_2 Im2)'*" f(2) = 0 and (B?")* = B?", k, converges weakly to
0 in B®" as Imz — 0. O

Proposition 3.9. Suppose f € B>". If Ty is bounded (compact, respectively)
then f is bounded ( lim f(z) =0, respectively).

Im2z—0
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Proof. Corollary 3.6 implies that for each z € H, T¢(z) = f(z) and hence

Since |(Trk,,k.)r| < ||T¢||, the bondedness of Ty implies the boundedness of
f. Suppose T is compact. By Proposition 3.8, k, converges weakly to 0 as

<Tsza kz)r — f(Z)

Im z — 0 and hence (Ttk,,k;)r — 0 asImz — 0.Thus lim f(z)=0.

Im z—0

Theorem 3.10. Suppose f € X and ¢ € Aut(H). Then m(z) = f o p(2)
for all z € H, that is, some Berezin transforms are Mobius invariant.

Proof. Since ¢ € Aut(H), there are constants a > 0 and b € R such that

¢(z) = az+ b (see[2]) and hence ¢~ (z) = (2 — b). We note that

and

Since

|

T a

K(p~H(w),2) ) Lt
K(z,z) ’

ke~ (w) = (

K(cp_l(w), 90_1(10)) - 71'4(111’1 ’LU)2 ‘

k(o7 (w)* 5 K (o™ (w), o7 (w) ™"

A (Im z)? 1+r , ] \ 147 -~
7:-2(5(15 — b))— z)4 ‘ (55) (r4{Im w)”)
47 (Im z)? 147
m2a?((w - b) —z)4
ra?4(Im z)? 1+r
m2at (2w —b) - 2)4

k() (W) K (w, w) ™",

(r4(Imw)*)"

(r4(Im w)*)"

fop(z) = Trop(2)
/H 0 o(w) ks (w) P dA, (w)

/H F(sp(w)) s (w) 2 (2 + 1)K (w, w) " dA(w)

/H Fw)l. (0~ () 2@r + DE (07 (w), 0 () (0™ (w) PdA(w)
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_ /H )@+ Dl (o™ )P 5 K (o7 (), 07 (w)) " dA(w)
- /H f(w)(2r + 1)k ()" K (w, w) ™" dA(w)

- /H F(W)lkg 2y (w) | dAr{w)
= Ty(p(2)) = fop(z).

This completes the proof. L]
Proposition 3.11. For any f € X, T} = T5.
Proof. Take any g, h in B®". Fubini’s Theorem implies that
(T7(g), h)r
= (P(fg),h)r
= [ Pa) wh{w)dA, (w)
= / / f(z K (w, 2)"dA, (2)h(w)dA, (w)

I

/ f(z / h(w)K (z, w) '+ dA, (w)dAr(2)
= | fEaREA
| #RE / (WK (2, 0) "7 dA, (w)dA, (2)

|

_ / / Fh(2)K (w, 2)*+7d A, (2)d A, (w)
_ /H g(w)P(FR)(w)d Ay (w)
Hence T} = T. -

Corollary 3.12. For any f € X, T} is self-adjoint if and only if [ is real-
valued.

Proposition 3.13. Suppose z € H and f, g € X. Then m(z) —f(2)-§(2) =
3 S Ja(F(u) — fF(0))(g(u) — g(v)]k=(u) 2|k, (v)[Pd A, (u)d A (v).

Proof. Since k, is a unit vector, Proposition 3.5 implies that

1 2 2 |
5 /[ () = F@)aw) = g(@) ks (u) k. () A (u)dA, o)
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_ / / — f(w)g(u) — f(u)g(v)

]Ik (W) 2|k, (v) PdAr (u)d A (v)
- / £ () g () s (w) [2dA, () — F(2)3(2) — F(2) - 3(2)

/ F@g(0) k- ([ dA, (0]

_ / Flw)g(u)|k,( )|2dAr(u)—2f(z)§(z)]

= - F(2)g(2).
O
Corollary 3. 14 Suppose z € H and f € L>®. Then |f|?(z) — |f(2)]? =
Ju Jur 1F (@) = F(0) 21k (w)? |k (v)[2d Ar (w)d Ay (v). |
Proof. In Proposition 3.13, put ¢ = f. Since f is also in L>°, we have the
result. [J
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