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HYBRID FIXED POINT THEORY AND EXISTENCE OF
EXTREMAL SOLUTIONS FOR PERTURBED NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

BArURAO C. DHAGE

ABSTRACT. In this paper, some hybrid fixed point theorems are proved
which are further applied to first and second order neutral functional
differential equations for proving the existence results for the extremal

solutions under the mixed Lipschitz, compactness and monotonic condi-
tions.

1. Statement of the problems

The functional differential equations (in short FDE) is a topic of great inter-
est since long time in the theory of differential equations. These equations are
modeled on a dynamical system in which the present state is determined by
the past state of the related dynamical systems. During the last half century a
significant efforts have been applied to study functional differential equations,
l.e., equations containing derivatives of the solutions and dependencies on the
solutions having non-local character (the right hand side depend not only on
the solutions, but also on the “prehistory” as well). Indeed, such models based
on the boundary value problems for equations with deviating arguments or
integro-differential equations provide the most adequate and accurate descrip-
tion of different processes in physics, economics, bio-mathematics and social
sciences. Therefore their study is of great importance and applications.

It 1s well known that when there are deviations of the differentiated func-
tions from the solutions (which characterizes neutrality), the questions of the
existence of solutions are essentially more complex for the study when in the
case of 'DE with deviating argument only in the right hand sides. Such results
for NFDE are of definite theoretical and practical importance. The exhaustive
treatment of NFDEs appear in the monographs like Hale |7], Henderson [9] and
a recent survey of Ntouyas [11]. The nonlinear NFDEs are generally studied for
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the existence results under the Lipschitz or Carathéodory or monotonic or the
sum of two Lipschitz or Carathéodory conditions of nonlinearities. Sometimes
it may happen that the nonlinearity involved in a NFDE is neither Lipschitz,
Carathéodory nor monotonic and can not be decomposed as a sum of a Lip-
schitz and a Carathéodory nonlinearity as well. Then in such cases, it seems
to be impossible to prove the existence results using the existing fixed point
theorems from nonlinear functional analysis. This is the main motivation of
the present paper and here in this paper, we prove a hybrid fixed point theorem
which covers a situation mentioned above and apply it to prove the existence
theorems for extremal solutions of certain neutral functional differential equa-
tions.

Let R be the real line and let [y = [-4§,0], § > 0, and I = [0,T] be two
closed and bounded intervals in R. Denote J = Iy U I = [~4,T]. Let C denote
the Banach space of continuous real-valued functions on Iy with the supremum
norm || - ||¢ defined by

lz]lc = sup |z (t)].
telp
For any continuous real-valued function x on J and forany ¢t € I, let z; : Iy — R
be a function defined by

i (0) =x(t+80), —6<6<0.

Given a function ¢ € C, in section 2, we consider the following first order
neutral functional differential equation,

(1.1) %[ﬂf(t) ~ ft,ze)) = g(t,z¢) + k(t,x¢) ae tcl

$O:¢7

where f,g,k: 1 xC — R.
Later, we study the following second order functional neutral differential
equation,
d !
(1.2) —[2'() = f(t.m)] = g(t, 20) + k(t, 1) ae. tel
zo = ¢, 2'(0)=n,

where f,g9,k: I xC — R.
The NFDEs (1.1) and (1.2) have already been studied in Sficas et al. [13]
and Ntouyas et al. [14] for the existence results. There, all the nonlinearities in-

volved in the equations are required to be continuous on the respective domains
of their definition. The NFDEs (1.1) and (1.2) further include the NFDEs

%[a}(t) — flt,xy)] = g(t,xy) ae. tel

To = ¢

(1.3)
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and

4 Sl (@) — F(t,20)]

~4g
g = Cba xl(o) = 1],

as the special cases. The NFDEs (1.3) and (1.4) have also been studied in
Ntouyas et al. [12] and Sficas and Ntouyas [13] for the existence results under
uniform continuity and Carathéodory conditions of the nonlinearities f and g
respectively. In this paper, we prove the existence results for extremal solutions
for the NFDEs (1.1) and (1.2) under the mixed Lipschitz, Carathéodory and
monotonic conditions of the nonlinearities involved in them. We do not require
the continuity of all functions in the NFDEs (1.1) and (1.2). Our results in-
cludes the existence results for extremal solutions of the NFDEs (1.3) and (1.4)
under the weaker conditions which are again new to the literature.

(t,z¢) ae. tel

2. Preliminaries

Let X be a Banach space with the norm ||-||. A mapping A : X — X is called
D-Lipschitz if there exists a continuous nondecreasing function 1 : Rt — R*
satisfying

(2.1) | Az — Ayl < ¥(llz - yl)

for all z,y € X with ¢(0) = 0. In the special case, when ¥(r) =qr (¢ > 0), A
is called a Lipschitz with the Lipschitz constant ¢. In particular, if ¢ < 1, then
A is called a contraction with the contraction constant ¢. Further, if ¥(r) < r
for all » > 0, then A is called a nonlinear D-contraction on X. For convenience,
we call the function ¥ to be a D-function of A on X.

An operator T : X — X is called compact if T(X) is a compact subset of
X. Similarly, T : X — X is called totally bounded if T' maps the bounded
subsets of X into the relatively compact subsets of X. Finally, T : X — X is
called completely continuous operator, if it is continuous and totally bounded
operator on X. It is clear that every compact operator is totally bounded, but
the converse may not be true. However, the two notions are equivalent on the
bounded subsets of X.

The Kuratowskii measure of noncompactness o of a bounded set S in X is
a nonnegative real number «(5) defined by

(2.2)  a(S) = inf {'r >0:5={J8;, and diam(S;) <, w}.

=1
The details of measures of noncompactness and their properties appear in
Granas and Dugundji [5], Deimling |4] and Zeidler [15].

Definition 2.1. A mapping 7 : X — X is called condensing (resp. countably
condensing), if for any bounded (resp. bounded and countable) subset S of X,
T'(S) is bounded and a(T(S)) < a(S), if a(S) > 0.
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Note that contraction and completely continuous mappings are condensing,
but the converse may not be true. Again, every condensing mapping is count-
ably condensing but the converse may not be true.

A non-empty closed set K in a Banach space X is called a coneif (i) K+ K C
K, (ii) AK C K for A € R,A > 0 and (iii) {—K} N K = {0}, where 0 is the
zero element of X. We introduce an order relation < in X as follows. Let
z,y € X. Then x <y if and only if y —z € K. A cone K is called normal if the
norm || - | is semi-monotone increasing on K, that is, there is a constant N > 0
such that ||z|| < Nyl for all z,y € K with z < y. It is known that if the
cone K is normal in X, then every order-bounded set in X is norm-bounded.
Similarly, the cone K in X is called regular if every monotone increasing (resp.
decreasing) order bounded sequence in X converges in norm. The details of
cones and their properties appear in Heikkila and Lakshmikantham [8].

For any a,b € X, a < b, the order interval [a, b] is a set in X given by

la,b]={x € X :a <z <b}.

Definition 2.2. Let X and Y be two ordered Banach spaces. A mapping
T : X — Y is said to be nondecreasing or monotone increasing if x < y implies
Tx < Ty for all z,y € [a, b).

We use the following two fixed point theorems in the sequel.

Theorem 2.1. Let [a,b] be a norm-bounded order interval in an ordered Ba-
nach space X and let T : [a,b] — [a,b] be a continuous and countably condens-
ing mapping. If T is nondecreasing, then T has the least fized point x. and the
greatest fized point * in [a,b] and the sequences {T™(a)} and {T"(b)} converge
to z, and x* respectively.

Proof. The proof can be obtained by using essentially the same arguments that
given in Dhage [1] with appropriate modifications. We omit the details. O

Theorem 2.2. (Heikkild and Lakshmikantham [8]) Let |a,b] be an order in-
terval in a subset Y of an ordered Banach space X and let Q : [a,b] — [a, b]
be a nondecreasing mapping. If each sequence {Qxn} C Q(|a,b]) converges in
Y, whenever {x,} is a monotone sequence in [a,b|, then the sequence of Q-
iteration of a converges to the least fized point x,. of Q@ and the sequence of
(2-iteration of b converges to the greatest fixed point ™ of (). Moreover,

z, =min{y € [a,5] |y > Qy} and 2* =max{y € [0,8] | y < Qu}.
In the following section, we combine Theorems 2.1, and 2.2 to obtain a

general hybrid fixed point theorem for the mappings on ordered Banach spaces.

3. Hybrid fixed point theory
Our main hybrid fixed point theorem of this paper is
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Theorem 3.1. Let |a,b] be a norm-bounded order interval in the ordered Ba-
nach space X and let T : |a,b] X [a,b] — |a,b] be a mapping satisfying the
following conditions.
(@) The mapping x — T(x,y) 18 continuous uniformly for y € [a, b],
(b) The mapping x — T(x,y) is countably condensing and monotone in-
creasing for each y € [a, b,
(¢) y— T(z,y) is monotone increasing for each x € [a,b], and
(d) every sequence {T(x,y.)} € T([a,b] x [a,b]) converges for each x €
la,b], whenever {y.} is a monotone sequence in l|a,b].

Then the operator equation x = T (x,x) has the least and the greatest solution
in [a,b|.

Proof. Define the operator Q : [a, b] — [a,b] by

(3.1) Qy = z,

where z is the greatest solution of the operator equation 7'(z,y) = 2. Let y €
la, b] be fixed and define the operator Ty (z) : [a,b] — [a,b] by Ty(z) = T(z, y).
Then T, is a countably condensing, continuous and monotone increasing op-
erator which maps a closed convex and bounded subset [a,b] of the Banach
space X into itself. Therefore, an application of Theorem 2.1 yields that T
has the least and the greatest fixed point in [a, b] and consequently the map-

ping () is well defined for each y € [a, b]. Next we show that () satisfies all the
requirement of Theorem 2.2 on [a, b).

First, we show that () is a nondecreasing mapping on [a, b]. Let y1,y2 € [a, b]
be such that y; < y3. Then there are unique elements 21, zo € [a, b} such that

Qui1 = 21 =T (21,41) = T}y (21)
and
Que = 22 = T'(22,Y2) = T}y, (22)-
From the monotonicity of T'(x,y) in y, it follows that
Ty (x) =T(z,51) < T(z,y2) = Ty, (2)
for all x € [a,b]. Hence for any z € [a, b]
T, (z) < T, (x)
for all n € N. In particular,
T (5) < T3 (0
for all n € N. By Theorem 2.1,
z1 = lim T2 (b) < lim T (b) = 2.

n—oo nN—o0
This shows that () defines a nondecreasing operator Q : [a,b] — [a, b](see also
Dhage [1, 2] and the references therein).
Next, let {y,}be a monotone sequence in [a,b]. We will show that the
sequence {Qy,} converges. By virtue of ), there is a monotone increasing
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sequence {z,} in [a, b] such that z,, = T(2n,yn), n € N. Let S = {z,}. Then §
is a bounded and countable subset of [a, b] such that S C |J,,c5 T(S, ¥n). Since
the map = — T'(z,y) is countably condensing for each y € [a, b], one has

a(S) < a( U T(S, yn)) = sup {a(T(S,y,)) : n € N} < a(S).

neN

If a(S) # 0, then we get a contradiction. As a result «(S) = 0 and that S is
compact. Hence the sequence {z,} converges to a point, say z in [a,b]. Now,
by hypothesis (c), the sequence {T'(z,y,)} converges, say to the point 7'(z,y)
for some y € |a,b]. Then, we have

T (20, yn) = T(2, )|l < T (20, yn) — T (2, yn) | + 11T (2, yn) — T2, 9)].

Passing the limit to n — oo in the above inequality,

lim [[T(2n,yn) — T(2,y)[ = 0.

n—00

As a result, the sequence {Qy,} C Q([a,b]) converges, whenever {y,} is a
monotone sequence in [a, b).

Thus, () satisfies all the conditions of Theorem 2.2 on [a,b] and hence an
application it yields that () has the least and the greatest fixed point. The
greatest fixed point of () is the greatest solution of the operator equation =
T(x,z) in [a,b]. Similarly, define the operator P : [a,b] — [a, b] by

(3.2) Py = z,

where z is the least solution of the operator equation 7'(z,y) = z. Clearly the
operator P is well defined. It can be shown by using the similar arguments
that P has the least fixed point in [a, b] which is also the least solution of the
operator equation T'(z,z) = x. As a result, the operator equation T'(z,z) = x
has the least and the greatest solution in [a, b]. This completes the proof. [

As a consequence of Theorem 3.1 we obtain

Corollary 3.1. Let [a,b] be an order interval in the ordered Banach space X
and let T : [a,b] X [a,b] — [a,b] be a mapping satisfying |
(@) x — T'(z,y) is continuous uniformly for y € [a,b],
(b) x — T(x,y) is countably condensing and monotone increasing for all
y € la,b], and
(¢) y— T(z,y) is monotone increasing for each x € {a,b).

Then the operator equation x = T(x,z) has the least and the greatest solution
if any one of the following conditions is satisfied.

(¢) la,b] is norm-bounded and T is compact multi-map.
(1) The cone K in X is normal and y — T(x,y) is a compact for each
x € [a,b]. |
(1i1) The cone K is regqular.
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The origin of hybrid fixed point theorems involving the sum of the two oper-
ators in a Banach space lies in the works of the Russian mathematician Kras-
noselskii [10]. In this case one operator happens to be a contraction and another
one happens to be a completely continuous on the domains of their definitions.
Since every contraction is continuous, both the operators in such theorems are
continuous. Below we prove a hybrid fixed point theorem involving the sum
of three operators in Banach spaces and relax the continuity condition of one
of the mappings in such hybrid fixed point theorems, instead we assume the
monotonicity and prove a fixed point theorem on ordered Banach spaces.

To prove the main result in this direction, we need the following useful
lemma.

Lemma 3.1. Let A,B: X — X be two mappings such that

(a) A is a nonlinear D-contraction and
(b) B is completely continuous.

Then the map T : X — X defined by Tx = Ax + Bx is a continuous and
condensing on X.

Proof. The proof appears in Dhage [1]. []

Theorem 3.2. Let [a,b] be an order interval in an ordered Banach space X .
Let A,B,C :[a,b] — X be three monotone increasing operators satisfying

(a) A is a nonlinear D-contraction,

(b) B is completely continuous, and

(c) every sequence {Cz,} C C([a,b]) converges whenever {zn} is a mono-
tone sequence in |a,b|, and

(d) Az + By+ Cz € [a,b] for all z,y, z € [a,b].

Further, if the cone K in X is normal, then the operator equation Ax + Bx +
C'z = x has the least and the greatest solution in |a,b].

Proof. Define an operator T on [a, b] X [a,b] by T(z,y) = Ax+ Bz + Cy. From
hypothesis (d) it follows that T defines a mapping T : [a,b] X [a,b] — |a,b].
From Lemma 3.1, it follows that the map x — T'(z,y) is condensing, continuous
and monotone increasing on [a,b] uniformly for y € [a,b]. Now the desired
conclusion follows by an application of Theorem 3.1. O

Corollary 3.2. (Dhage [2]) Let [a, b] be an order interval in the ordered Banach
space X. Let A, B,C : [a,b] — X be three nondecreasing operators satisfying

(a) A is a contraction,

(b) B is completely continuous and

(¢) C is compact, and

(d) Az + By+ Cz € [a,b] for all z,y,z € la, b].

Further, if the cone K in X is normal, then the operator equation Ax + Bx +
Cx = z has the least and the greatest solution in [a,b].
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Remark 3.1. Note that hypothesis (d) holds in Theorem 3.1 and Corollary 3.2,
if the operators A, B, C' are monotone increasing and there exist elements a
and b in X such that a < Aa+ Ba+ Ca and Ab+ Bb+ Cb < b satisfying a < b.

Remark 3.2. Notice that Corollary 3.2 is an improvement upon a fixed point
theorem proved in Dhage [3] concerning the solutions of operator equations
involving the three operators in Banach spaces.

Theorem 3.2 contains two hybrid fixed point theorems useful in applica-
tions to nonlinear differential and integral equations, because of their special
importance we state them separately.

Corollary 3.3. Let [a,b] be an order interval in the ordered Banach space X .
Let A, B : [a,b] — X be two monotone increasing operators satisfying

(a) A is completely continuous, and
(b) every sequence {Byn} C B([a,b]) converges, whenever {y,} is a mono-
tone sequence in [a,bl, and
(¢c) Ax+ By € [a,b] for all x,y € [a,b].
Further, if the cone K in X is normal, then the operator equation Ax+Bx =«
has the least and the greatest solution in [a,b).

Corollary 3.4. Let |a,b] be an order interval in the ordered Banach space X .
Let A, B : |a,b] — X be two monotone increasing operators satisfying

(@) A is a nonlinear D-contraction, and
(b) every sequence {Byn} C B(la,b]) converges, whenever {y,} is a mono-
tone sequence in [a,b], and
(c) Az + By € [a,b] for all x,y € [a, b).
Further, if the cone K in X is normal, then the operator equation Ax+ Bx =«
has the least and the greatest solution in [a,b].

Remark 3.3. Note that hypothesis (¢) holds in Corollary 3.3 and Corollary 3.4,
if the operators A, B are monotone increasing and there exist elements a¢ and
b in X such that a < Aa + Ba and Ab+ Bb < b satisfying a < b.

4. Existence theory

Let B(I,R) denote the space of bounded real-valued functions on I. Let
C(J,R), denote the space of all continuous real-valued functions on J. Define
a norm || - || by

Iz} = sup |z(2)].
- ted
Clearly C(J,R) becomes a Banach space with respect to the above norm. By
L'(I,R) we denote the set of Lebesgue integrable functions on I and the norm
|- |z in LY(I,R) is defined by

lell s = ] 2(8)] ds.
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Define the order relation “ < ” by the cone K in C(J,R), given by
(4.1) K={zeC(JR)|x(t) >0 forallt € J}.

Clearly, the cone K is normal in C(J,R). Note that the order relation “ < ”
in C(J,R) also induces the order relation in the space C = C(Ip,R) which we
also denote by “ < 7 itself when there is no confusion.

We need the following definitions in the sequel.

Definition 4.1. A mapping 3 : I x C — R is called D-Lipschitz if there exists
a continuous and nondecreasing function v’ such that

6t z) = B, y)| < ¥l —ylic)
for all (¢,z), (t,y) € I x C. The function v is called a D-function of S on I x C.

Definition 4.2. A mapping 3: 1 x C — R is said to be Carathéodory if

(i) t+— B(t,x) is measurable for each x € C, and
(ii) z — B(t, ) is continuous almost everywhere for ¢t € I.

Furthermore, a Carathéodory function 3(t, ) is called L!-Carathéodory if

(iii) for each real number » > 0 there exists a function h, € L'(I,R) such
that

B(t,z)| < h(t), ae tel
for all x € C with ||z||c < r.

Definition 4.3. A mapping 3: I x C — R is said to be Chandrabhan if

(i) t — B(t,z:) is Lebesgue integrable for each z € C'(J,R), and
(ii) « — B(t, ) is nondecreasing almost everywhere for ¢ € I.

Furthermore, a Chandrabhan function 3(¢,z) is called L'-Chandrabhan if

(iii) for each real number r > 0 there exists a function g € L*(I,R) such
that

1B(t,x)| < qr-(t), ae tel
for all x € C with ||z|lc < 7.

4.1. Existence results for first order NFDE

Definition 4.4. A function z € C(J,R) N AC(I,R) is called a solution of the
NFDE (1.1) on J if

(i) the function ¢+ [z(t) — f(t, ;)] is absolutely continuous on I, and
(ii) z satisfies the equations in (1.1),

where AC(I,R) is the space of absolutely continuous real-valued functions on
I

We use the following definitions in the sequel.
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Definition 4.5. A function a € C(J,R) N AC(I,R) is called a lower solution
of the NFDE (1.1) on J if the map t — [a(t) — f(¢, a;)] is absolutely continuous
on I, and

la(t) ~ £(t.a0)] < glt,ar) + k(t,a)) ac. tel
ap < ¢.

Again, a function b € C(J,R) N AC(I,R) is called an upper solution of the
NFDE (1.1) on J if the function ¢t — [b(t) — f(t, b:)] is absolutely continuous
on I, and

%[b(t) — f(t,be)] > g(t,bs) +k(t,by) ae. €T
bo > ¢.

Finally, a function z € C(J,R) N AC(I,R) is a solution of the NFDE (1.1) on
J if it is a lower as well as a upper solution of the NFDE (1.1) on J.

Definition 4.6. A solution z,; of the NFDE (1.1) is said to be maximal if for
any other solution z to NFDE (1.1) one has z(t) < s (¢) for all £ € J. Again,
a solution z,, of the NFDE (1.1) is said to be minimal if z,,(t) < z(¢) for all
t € J, where z is any solution for the NFDE (1.1) on J.

We need the following hypotheses in the sequel.

(fo) f(0,2) =0 for all x € C.

(f1) f is continuous and D-Lipschitz on I x C with the D-function 1.

(f2) The function f(¢,x) is nondecreasing in x almost everywhere for ¢ € 1.
(g1) g is L1-Carathéodory.

(g2) The function g(t, x) is nondecreasing in x almost everywhere for t € 1.
(k1) k is L'-Chandrabhan.

(ko) NFDE (1.1) has a lower solution a and an upper solution b with a < b.

Theorem 4.1. Assume that the hypotheses (fo)-(f2), (91)-(g2) and (k1)-(k2) |
hold. If (r) <r forr > 0, then the NFDE (1.1) has a minimal and a mazimal
solution in [a,b] defined on J.

Proof. NFDE (1.1) is equivalent to the integral equation
(4.2)

ZC(t) _ {é(O) - f(o,ﬁb) + f(t,CCt) +/0 Q(S,CBS)dS —|—]0 k‘(s’ms) ds, iftel
(b(t)’ if t € 1.

Set X = C'(J,R) and consider the order interval [a, b] in X which is well defined
in view of hypothesis (k2). Define three operators A, B,C : [a,b] — X by

—f(0,0) + f(t,zy), iftel,

0, if t € I,

(4.3) Az(t) =
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f

¢
#(0) —l-/ g(s,xs)ds, iftel,
0

(4.4) Bx(t) = <
L o(1), if t € Iy,
and
¢ ot
/ k(s,zs)ds, iftel,
(4.5) Cx(t) = < Jo
0, if t € Ip.

Clearly the operators A, B and C are well defined on {a,b] in view of hy-
potheses (f1), (g1) and (k7). Then the integral equation (4.2) is equivalent to
the operator equation

(4.6) Az(t) + Bz(t) + Cx(t) = z(t), teJ
We shall show that A, B and C satisfy all the conditions of Corollary 3.2 on
a, b].

Step I : Firstly, we show that A is a contraction operator on [a,b]. Let
x,y € [a,b]. Then by hypothesis (f7),

|Az — Ay|| < Sup [f () — f{Eye)| < vlllze — yelie) < ¢l —yl)
€
where, ¥(r) < r for 7 > 0. This shows that A is a nonlinear D-contraction on

la,b]. Next we show that A is monotone increasing on [a, b]. Let z,y € [a,b] be
such that x < y. Then, by (f2),

(_f(07¢)+f(taxt)a lftEIa
Ax(t) = <
\0, if t € Iy,
(_f(03¢)+f(t3yt)a lftEI,
< <
\0, if t € Iy,
= Ay(t)

for all t € J. Hence, Az < Ay, and so, the operator A is monotone increasing
on [a, bl.

Step IT : Secondly, we show that the operator B is completely continuous
on [a,b]. It can be shown as in Guenther et al. [6] that B is a continuous
operator on |a,b]. Now, we show. B maps bounded sets into bounded sets in
X. If S is a bounded set in X, then there exists » > 0 such that ||x|| < r for
all x € §. Now for each u € B(S), one has

)

t
»(0) + / g(s,xs)ds, iftel,
0

\Qb(t), if t € Iy

u(t) = <
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for some x € S. Then, for each t € J,

u(®)] < Illc + / 9(s, )| ds

< [lllc + /0 ho(s) ds

< li¢llc + fhrlizs.
This further implies that

lull < liéllc + hrliLr

for all w € B(S). Hence, B(S) is bounded.
Next we show that B maps bounded sets into equicontinuous sets. Let S
be, as above. Then, we have

4 1
5(0) + / o(s,z.)ds, iftel,
0

\(ﬁ(t), if t € I
for some £ € S. Then for any t;,t; € I with t; < t5, we have

/Otl 9(s,xs)ds — /(:2 g(s,xs)ds
= ftz l9(s, )| ds

t1

to
< / h.(s)ds.
t1

If t1,t2 € Ip, then |u(t1) —u(t2)| = |p(t1) — ¢(t2)|. For the case, where t; < 0 <
to, we have that

u(ty) —ulta)] < |é(tr) — $(0) - /O Cg(s,z.) ds

u(t) = <

lu(ty) —u(t2)] <

< 1(t) — $(0)] + /0 “9(s,z0)| ds

to

< |o(t1) — ¢(0)] + : h(s)ds.

Hence, in all cases, we have
lu(t1) — u(tz)| — 0 as t1 — 1.

As a result B(S) is an equicontinuous set in X. Now an application of Arzela-
Ascoli theorem yields that the operator B is totally bounded on X. Again, it
can be proved as in the case of operator A, that the operator B is also monotone
increasing on [a, b]. -

Step III : Finally, we show that the operator C satisfies the hypothesis (c)
of Theorem 3.2 on [a,b]. Let {z,} be a monotone sequence in [a,b]. We show
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that the sequence {Cz,} converges in X. From the monotonicity of k(¢,z)
in x, it follows that the operator C and consequently the sequence {Cz,} is
also monotone in X. To finish, it is enough to show that {Cz,} is uniformly
bounded and equicontinuous sequence. Since the cone K in X is normal, there

exists a constant r > 0 such that ||z,|| < r for all n € N. By the definition of
C, one has

4 t
k(s,zn(s+0))ds, iftel,
Czn(t):</0 ( )

LO, if t € I.
Since (Hj) holds, we have

Caa)] < [ (s,za(s+0))| s

< /:qr(s)ds

< ”%"”Ll
for all t € J. This implies that

1Cznll < llgr(l L2

for all n € N. Hence, {Cz,} is uniformly bounded.
Next we show that {Cz,} is equicontinuous sequence in X. Now, for any
t1,t0 € I with t; <5, we have

Conlt) — Conlta)] < /0 k(s 2n(s + ) ds — /0 " k(s, 2a(s + 6)) ds

= /2 k(s, zn(s + 0))| ds

ty

2
< / gr{(s)ds.
t1

If t1,t; € Iy, then |Cz,(t1) — Cz,(t2)| = 0. For the case, where t; <0 <ty we
have that

[Czn(t1) = Czn(t2)] < /ng(sazn(8+9))d8 < |p(t2) — p(0)},

where p(t) :/0 qr(s)ds.

Hence, in all cases, we have
|C'zn(t1) — Czn(tg)l — 0 as t; — ts.

As a result {Cz,} is an equicontinuous sequence in X. Now an application of
Arzela-Ascoli theorem yields that the sequence {Cz,} converges in X.

Thus the operators A, B and (' satisfy all the conditions of Theorem 3.2
and hence the operator equation Ax + Bx + Czx = = and consequently the
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NFDE (1.1)has a minimal and a maximal solution in [a, b] defined on J. This
completes the proof. O

4.2. Existence results for second order NFDE

We use the following definitions in the sequel.

Definition 4.7. A function z € C(J,R)N AC*(I,R) is called a solution of the
NFDE (1.1) on J if

(i) the function ¢ — [z/(t) — f(t, z;)] is absolutely continuous on I, and
(ii) x satisfies the equations in (1.1),

where AC'(I,R) is the space of continuous real-valued functions whose first
derivative exists and is absolutely continuous on /.

Definition 4.8. A function a € C(J,R) N AC*(I,R) is called a lower solution
of the NFDE (1.2) on J if the map t — [a’(f) — f(¢, a;)] is absolutely continuous
on [, and

‘C“i‘[a’(t) — f(t,ar)] < g(t,a¢) + k(t,a:) ae tel

dt
ao < ¢, a'(0)<n.
Again, a function b € C(J,R) N AC*(J,R) is called an upper solution of the

NFDE (1.2) on J if the map t — [b/(t) — f(¢t, b;)] is absolutely continuous on I,
and

%[b,(t) — F(t,b)] > g(t,be) + k(t,by) ae. tel
bO 2 QS) b,(o) Z n.

Finally, a function z € C(J,R) N AC'(I,R) is a solution of the NFDE (1.2) on
J if it is a lower as well as a upper solution of the NFDE (1.2) on J.

Definition 4.9. A solution zs of the NFDE (1.2) is said to be maximal if for
any other solution z to NFDE (1.2) one has z(t) < xp(t) for all ¢ € J. Again,
a solution z,, of the NFDE (1.2) is said to be minimal if x,,(t) < z(¢) for all
t € J, where x is any solution of the NFDE (1.2) on J.

We need the following hypothesis in the sequel.
(k3) NFDE (1.2) has a lower solution a and an upper solution b with a < b.

Theorem 4.2. Assume that the hypotheses (f1)-(f2), (g1)-(g2) and (k1), (k3)
hold. Furthermore, if T1(r) <1 forr > 0, then the NFDE (1.2) has a minimal
and a mazximal solution in |a,b] defined on J.
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Proof. NFDE (1.2) is equivalent to the integral equation

(d)() + [n—f(0 t—l—/fsxs

(4.7) z(t) = +/ (t —s)g{s,zs)ds + / (t — s)k(s,xs)ds, iftel

\Qb(t), if t € I.

Set X = C(J,R) and consider the order interval [a, b] in X which is well defined
in view of hypothesis (kg) Define three operators A, B,C : |a,b] — X by

[77 f(0 t—l—/fsa:s ds, iftel,

0, ift € Io,

(4.8) Ax(t) = <

r t
»(0) + /0 (t —s)g(s,xs)ds, iftel,

(4.9) Bzx(t) = 4
kﬁb(t), if t € I,
and
¢ pt
/ (t —s)k(s,xs)ds, iftel,
(4.10) Cz(t) = ¢ Jo
0, if t € Iy.

\

Clearly the operators A, B and C are well defined on [, b] in view of hypotheses
(f1), (g1) and (k). Then, the integral equation (4.7) is equivalent to the
operator equation

(4.11) Az(t) + Ba(t) + Cx(t) = z(t), teJ.

Now, it can shown as in the proof of Theorem 4.1, that the operators A, B and
C satisfy all the conditions of Theorem 3.2 on [a,b]. Hence NDFE (1.2) has a
minimal and a maximal solution in [a, b] defined on J. [

The existence results for extremal solutions of Carathéodory NFDEs (1.3)

and (1.4) can be stated as follows. For this, we need the following hypotheses
in the sequel.

(k4) NFDE (1.3) has a lower solution a and an upper solution b with a < b.
(ks) NFDE (1.4) has a lower solution a and an upper solution b with a < b.

Theorem 4.3. Assume that the hypotheses (f1)-(f2), (91)-(g2) and (k4) hold.
Furthermore, if ¥(r) < r forr >0, then the NFDE (1.3) has a minimal and a
mazimal solution in [a,b] defined on J.

Theorem 4.4. Assume that the hypotheses (f1)-(f2), (91)-(g2) and (ks) hold.
Furthermore, if T'1(r) <r for r > 0, then the NFDE (1.4) has a minimal and
a mazimal solution in |a,b] defined on J.
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Similarly, the existence results for the extremal solutions of discontinuous
NFDE (1.3) and (1.4) can be stated as follows.

Theorem 4.5. Assume that the hypotheses (f1)-(f2), (k1) and (k3) hold with
the function k replaced by g. Furthermore, if ¥(r) < r for r > 0, then the
NFDE (1.3) has a minimal and a mazimal solution in |a,b] defined on J.

Theorem 4.6. Assume that the hypotheses (f1)-(f2), (k1) and (k4) hold with
the function k replaced by g. If T (r) <r for r > 0, then the NFDE (1.4) has
a minimal and a mazimal solution in [a,b] defined on J.
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