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PERTURBATION OF NONHARMONIC FOURIER SERIES
AND NONUNIFORM SAMPLING THEOREM

Here CHUL PAK AND CHANG EON SHIN

ABSTRACT. For an entire function f whose Fourier transform has a com-
pact support confined to [—m, 7] and restriction to R belongs to L2(R),
we derive a nonuniform sampling theorem of Lagrange interpolation type
with sampling points A, € R, n € Z, under the condition that

1
limsup |An ~n| < =.
n— 00 4

1. Introduction

Any function f which has a compact support in [—m, 7] and belongs to

L*|—m, 7] can be expanded in terms of the orthonormal basis {f;; n € Z}
as
. . einm | einm
7; V2T [ [2(gm] V2T
where (g, h = f - :E)h x)dx. Taking the inverse Fourier transform in

(1.1), we obtaln the classical Whittaker-Shannon-Kotel'nikov [WSK] sampling
theorem,

(12) £&) =3 fln)sinc(t - n)

nez

where sinct = %@ is the cardinal sinc function and f is the inverse Fourier

transform of the function f. This classical theorem expresses the possibility of
recovering a certain kind of signals from a sequence of reqularly spaced samples.
From many practical points of view it is necessary to develop sampling theorems
for a sequence of samples taken with a nonuniform distribution along the real
line. The first answer for this direction was given by Paley and Wiener ([7,
p.108]), and later an advanced result was presented by Levinson ([6]). The
result is, in fact, related with the perturbation of a Hilbert basis {einm}nez
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for the function space L?[—m, 7] in such a way that the perturbed sequence
{ePn®) 7 is also a Riesz basis for the same space. The mazimum perturbation
of the system {€™*},cz (in the sense of the following theorem) is found by
Kadec ([5]) whose result is commonly referred to as the Kadec’s “One-quarter”
theorem. It states that:

Theorem 1.1 (Kadec). Let {un}nez be a sequence in R satisfying
1
(1.3) lpn —n| <D< 1 for any n € Z.

Then the set {e'*® : n € Z} is a Riesz basis for L?|—m,7].

The number 1/4 is the best possible constant for the set {e*% : n € Z} to
be a Riesz basis ([8, p. 44]). Despite the fact that 1/4 is the best possible
constant, the Kadec’s One-quarter theorem does not argue that a sequence of
real numbers {\, },cz beyond the Kadec’s condition (1.1) can not be a Riesz
basis for L?[—m,n]. Depending on the above theorem, nonuniform sampling
expansion of band-limited function with finite energy is possible ([4]).

In this paper, we prove that if {A, },cz is a sequence of distinct real numbers
satisfying
(1.4) limsup A, ~ ] <

nN—oo

then the set {€**"® : n € Z} becomes a Riesz basis. Here we note that finitely
many sampling points may not satisfy (1.3) and be arbitrarily distributed.
Based on the above result, we generalize the Paley-Wiener-Levinson irregular
sampling theorem ([3], [6]) to say that any [—7, 7]-bandlimited function f whose
restriction on R belongs to L?(R) can be recovered from its sample values
{f(An)}nez based on irregular sampling points {\,}.cz along the real line
with the condition (1.4): To put it explicitly,

L{t
)= 3 FOm) T

nez

where the series converges uniformly on any bounded horizontal strips of C and

L(t):(t-—)\o)ﬁ(l—;—n) (1—;:).

n=1

2. Preliminaries

We introduce some basic terminologies related to Riesz bases and frames on
a Hilbert space. Let H be a separable Hilbert space. Two bases {x, }nez and
{¥n }nez for H are said to be equivalent if there exists a bounded linear bijection

T : H — H such that Ty, = z, for all n € Z. A basis {x,, : n € Z} for H is
called a Riesz basis if it is equivalent to an orthonormal basis {e, : n € Z} for
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H. A sequence of distinct vectors {z, },.cz in H is said to be a frame if there
exist positive constants A and B such that

(2.1) AllFIZ < Y I =) < BIFIE,
ne€Z

for any f € H. We note that every Riesz basis for H is a frame, but not
conversely. A frame that ceases to be a frame when any one of its elements
1s removed is said to be an exact frame. It is well-known that a subset of a
Hilbert space is an exact frame if and only if it is a Riesz basis. The proofs
and complete discussions of these matters can be found in [8].

The following auxiliary Lemma concerning the nonharmonic Fourier series
{e*#n®}, cz presents a criterion on Riesz bases for the Hilbert space L%[—m, 7],
which is usetul for the proof of Theorem 3.2.

Lemma 2.1 ([1, p. 353]). If {€*%},.cz is a frame in L*[—a,a] but fails to be
a frame in L*[—a, a] by the removal of some function of the set, then it fails to
be a frame in L?|—a,a] by the removal of any function of the set.

We next define a space of functions whose expansions as sampling series will
be discussed.

The function f represents the Fourier transform of f defined by
R 1 .
=F = — —@lf(g)dx
fO=FN© = o= [ =@

when the integral exists in some sense. We denote by B2 the space of all

entire functions f such that the support of f is contained in [—7, 7] and the
restriction of f to R belongs to L*(R). For an entire function f it follows from
the Paley-Wiener Theorem in [2] that f € B2 if and only if f|g € L*(R) and
there exists A > 0 such that

(2.2) 1f(2)| < Ae™™! for any z = z + iy in C.

An entire function f satisfying (2.2) is called a [—, w|-bandlimited function.
If f € B2, then by the Holder inequality we can easily see that

(2.3) 1F() < 1 Fllp2i— e me™! for any z = z + iy.

An entire function f is said to be a function of finite order if there exist a
positive constant a and ry > 0 such that [f(2)] < el*I" for |z| > 7o, and the

number p = inf{a > 0 : |f(2)| < e/*I" for |z| sufficiently large} is called the
order of f.

Theorem 2.2 (Hadamard). Let f(z) be an entire function of order p,

{Antns o
be its zeros, and A, # 0 for n # 0. Let p be the smallest integer for which the

Series
> o
p+1
neZ\{0} Anl
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converges, where the prime indicates the summation over nonzero values of n.

Then
f(z) = zmef(®) H E (%;P) ;
neZ\{0} "
where m is the multiplicity of the zero at the origin, P(z) is a polynomial of
degree not exceeding p and E (u;p) = (1 — u)e e /2++4/p £ b is 4 positive
integer, and E (u;0) =1 — u.

3. Stability of nonharmonic Fourier series

We establish the stability of a Riesz basis consisting of nonharmonic Fourier
series, that is, if {e"*® : n € Z} is a Riesz basis for L?|—n, 7| and a sequence
{An}nez satisfies the condition (1.4), then the set {e**"® : n € Z} is also a
Riesz basis.

Lemma 3.1. Let {e*~* : n € Z} be a Riesz basis of L*[—m, x|, S = {nx : k =
1,...,¢} be a finite subset of Z and let {fin, }5_, be a finite sequence of distinct
complex numbers such that fin, # p, for anyn € Z and k =1,...,£. Then the
set |

{e#* :neZ\SYu{e*  k=1,...,£}

1s also a Riesz basis.

Proof. Since the system {e**** : n € Z} is a frame, so is {e**"® : n € Z} U
{e"#12}. Then by virtue of Lemma 2.1, the set A4 = {e#** :n € Z\ {ny}} U
{e*#717} is a frame since {€**»% : n € Z} is a frame. The fact that A\ {e#1%}
is not a frame illustrates that .4 should be, in fact, an exact frame and hence a
Riesz basis. The result follows by applying the same argument repeatedly. O

As an application of Lemma 3.1, we present a nonuniform sampling the-
orem with sampling points beyond the Kadec’s 1-condition. We consider a
sequence { Ay, }nez of distinct real numbers satisfying the condition (1.4) which

1s equivalent to the condition that there exists N € N such that
1

(3.1) Dy = sup |A, —n| < -.
In|>N 4

By the Kadec’s One-quarter theorem (Theorem 1.1) and Lemma 3.1, we have:

Theorem 3.2 (Perturbation of nonharmonic Fourier series). Let {\,}nez be
a sequence of distinct real numbers satisfying (3.1) for some N € N. Then the
set {€** :n € Z} is a Riesz basis for L?[—m, ).

Proof. Define a sequence {u,} by

_Jn if |n| <N,
= YA, ifIn| > N.
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By Theorem 1.1, the set {e*~* : n € Z} is a Riesz basis of L*[-,7]. Let
S ={n:|n| < N}. It follows from Lemma 3.1 that the set {e!** :n € Z} is a
Riesz basis. []

For a sequence {\,} satisfying (3.1) we define an infinite product L(z) by

L(z)z(z—)\o)ﬁ(l—i) (1_{_”)'

n=1

Here we assume that each )\,, n # 0, is non-zero. Then L is a well-defined
entire function, and satisfies the following Lemma.

Lemma 3.3. Let {\,}ncz be a sequence of distinct real numbers satisfying

(3.1) for some N € N and A, # 0 for n # 0. There exists C > 0 such that for
any z =z + 1y (z,y € R) with |y| > 1,

e 1Yl

L(2)| 2 O mamer

Proof. Define a rational function

SRR ([

R )

From Lemma 16.1 in [6], there exists a constant Cy > 0 such that

|y|ew|y|
(L4 Jel)iPn 1

1Q(2)L(z)] > Co Z =T+ 1y.

Since the function W(Jﬁ‘il%—y)l is bounded below by some positive constant C; > 0
on the set {z + iy : |y| > 1}, we get

|y| e“|y| >0 ew\yi \ | 1
A+ )P = Y e W=

where C = C()Cl. []

L(2)| 2 Co|

Now we have the following nonuniform sampling theorem of the Lagrange
type interpolation series with finitely many free sampling points.

Theorem 3.4. Let {\,}ncz be a sequence of distinct real numbers satisfying
(3.1) for some N € N and A, # 0 forn # 0. For any f € B2, f can be

recovered from its sample values {f(An)}nez by means of the Lagrange type
interpolation series

= L(z
0= 3 M G

n=—oo

where the series converges uniformly in any bounded horizontal strips of C.
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Proof. By Theorem 3.2, the set {e~**»* : n € Z} is a Riesz basis for L*[—m, 7.
It admits a biorthogonal basis {h,(z) : n € Z}, that is, for every m,n € Z,

(32) (hna e_iAm:B)L?[—'xr,?r] = Onm.-

Thus, every f € L[, 7] can be written in terms of h, as

(33) f(s) — Z <fa e_i)\n£>L2[—~1r,7r] hn(g) in L2[_7T7 ﬂ-]a
that is,
(3.4 lim Hn(€) =0 in I2[-m 7],

where Hon(€) = F(6) = X jujcmfs ) 1o m mhn(€). Let

ril

gn(2) = FH(Vomhax.)(z) = / ha(€)e* de,

i

where x_ is the characteristic function of the interval [—m,7|. Taking the
inverse Fourier transform in (3.3), we have

(3.5)  im= 3 0

N=——0oC

where the series converges in L2(R). Note that h,x, € L?[—7, 7] and g, € Bx.
By (3.2), each A, is a zero of the function g, for m # n. Suppose that
there exists a zero u of g, other than \,,, m # n. By Lemma 3.1 the set
{em?m® . m e Z\ {n}} U {e"**} is a frame over [—m,m]. Hence there exists
A > 0 such that

Ath”i?[*W,ﬂ] S Z l<hn7 6~i<)\m, .>>L2[—w,w] I2+|<hn; 6_i<’u’ .>>L2[—ﬂ':‘ﬂ'] |2
meZ\{n}
= 3 g Om) P+ lgn(w)® =0,
meZ\{n}

which says h,, = 0. This contradiction implies that A,,, m # n, are the only
zeros of g,.
Since g, € B2, it follows from (2.2) there exists C,, > 0 such that

(3.6) 9n(2)] < Cre™ 2=z +1y.

Observing that

> 5

n;/-O
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by virtue of the Hadamard’s Factorization theorem we have, for n # 0 and
2z # An,

0n(z) = ™ (= - 20) T (1 - m)

m#n
_E — A z Z z2{ =+ )
37) = Pemss 20 -2 (1 (s
(3.7) ‘ l—z/)\nH " om ) €
meN
3.8 _ o Po(z)taz l—i 1 _ Z
(38) © 1-—2/)\ H( . A m
meEN
L(z)
3.9 — o Pn(2)+az
(39)  =e -

where P, (z) is a linear or a constant function and o= ZmeN( +5= )— —)-}n- €

R. For the case when n = 0, the factor z—;‘j{— in (3.7) ~ (3.9) ought to
be disappeared and go(z) = efo(z)+ez ZL(i) We observe that P,(z) + az is a

constant. Indeed, by Lemma 3.3 and (3.6) there exists D,, > 0 such that
)BP'”‘ (z)+azl
"z = An| (14 [2])Pr 1

for large 2. The function on the right side of (3.10) is unbounded unless P, (2)+
az 1s a constant. Hence we get

(3.10) Cn>D

L(z)
Ay
Z— An

for some constant A,. Since g,(A,) = 1, we have A,, = 1/L/(\,) and in view
of (3.5)

Lz
(3.11) Z F(\ L,(/\ )(() ™t

gn(2) =

where the series converges in L*(R). Observing by (3.4) that H,, converges
to 0 as m — oo in L2[—m, 7|, Hn(z) = F Y Hp)(z) € B2 and H,,(z)
F(2) = 2 inj<m F(An) L,(Af)(é)_)\n) , it follows from (2.2) that the series in (3.11
converges uniformly to f(z) on any bounded horizontal strip of C.

I
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