INTUITIONISTIC FUZZY SETS IN GAMMA-SEMIGROUPS

Mustafa Uçkun, Mehmet Ali Öztürk, and Young Bae Jun

ABSTRACT. We consider the intuitionistic fuzzification of the concept of several Γ -ideals in a Γ -semigroup S, and investigate some properties of such Γ -ideals.

1. Introduction

The notion of a fuzzy set in a set was introduced by L. A. Zadeh [10], and since then this concept has been applied to various algebraic structures. K. T. Atanassov [1] defined the notion of an intuitionistic fuzzy set, as a concept more general than a fuzzy set (see also [2]). Using fuzzy ideals, N. Kuroki [5] discussed characterizations of semigroups (see also [6]). K. H. Kim and Y. B. Jun [3] considered the intuitionistic fuzzification of the notion of several ideals in a semigroup, and investigated some properties of such ideals (see also [4]). M. K. Sen and N. K. Saha [9] defined the concept of a Γ -semigroup, and established a relation between regular Γ -semigroup and Γ -group (see also [7], [8]). In this paper, we introduce the notion of an intuitionistic fuzzy Γ -ideal of a Γ -semigroup, and we investigate some properties connected with intuitionistic fuzzy Γ -ideals in a Γ -semigroup.

2. Preliminaries

Let $S = \{x, y, z, \ldots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \ldots\}$ be two non-empty sets. Then S is called a Γ -semigroup if it satisfies

- $x\gamma y \in S$,
- $(x\beta y)\gamma z = x\beta(y\gamma z)$

for all $x, y, z \in S$ and $\beta, \gamma \in \Gamma$. A non-empty subset U of a Γ -semigroup S is said to be a Γ -subsemigroup of S if $U\Gamma U \subseteq U$. A left (right) Γ -ideal of a Γ -semigroup S is a non-empty subset U of S such that $S\Gamma U \subseteq U$ ($U\Gamma S \subseteq U$). If U is both a left and a right Γ -ideal of a Γ -semigroup S, then we say that U is

Received November 1, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 03E72, 03F55, 20M12, 20M99.

Key words and phrases. (regular, simple) Γ-semigroup, Γ-subsemigroup, (interior) Γ-ideal, Γ-bi-ideal, intuitionistic fuzzy Γ-subsemigroup, intuitionistic fuzzy (interior) Γ-ideal, intuitionistic fuzzy Γ-bi-ideal, intuitionistic fuzzy left simple Γ-semigroup.

a Γ-ideal of S. A Γ-subsemigroup U of a Γ-semigroup S is called an interior Γ-ideal of S if $S\Gamma U\Gamma S\subseteq U$. A Γ-bi-ideal of a Γ-semigroup S is a Γ-subsemigroup S of S such that S and S in S, that is, S denote the principal left Γ-ideal of a Γ-semigroup S generated by S in S, that is, S and S is said to be regular if, for each S is called left-zero (right-zero) if S if S is that S is called left-zero (right-zero) if S if S is said to be left (right) simple if S has no proper left (right) Γ-ideals. If a Γ-semigroup S has no proper Γ-ideals, then we say that S is simple. An element S in a Γ-semigroup S is called an idempotent if S if S is semigroup S.

By a fuzzy set μ in a non-empty set X we mean a function $\mu: X \longrightarrow [0,1]$ and the complement of μ , denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. An intuitionistic fuzzy set (briefly IFS) A in a non-empty set X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \},\$$

where the functions $\mu_A: X \longrightarrow [0,1]$ and $\nu_A: X \longrightarrow [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ to the set A, which is a subset of X, respectively, and

$$0 \le \mu_A(x) + \nu_A(x) \le 1$$

for all $x \in X$. An intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ in X can be identified to an ordered pair (μ_A, ν_A) in $I^X \times I^X$ where I = [0, 1]. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the IFS $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$. Let χ_U denote the characteristic function of a non-empty subset U of a Γ -semigroup S.

3. Intuitionistic fuzzy Γ -ideals

In what follows, let S denote a Γ -semigroup unless otherwise specified.

Definition 3.1. For an IFS $A = (\mu_A, \nu_A)$ in S, consider the following axioms:

$$(\Gamma S_1) \ \mu_A(x\gamma y) \ge \min\{\mu_A(x), \mu_A(y)\}, (\Gamma S_2) \ \nu_A(x\gamma y) \le \max\{\nu_A(x), \nu_A(y)\}$$

for all $x, y \in S$ and $\gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called a first (resp. second) intuitionistic fuzzy Γ -subsemigroup (briefly $IF\Gamma S_1$ (resp. $IF\Gamma S_2$)) of S if it satisfies (ΓS_1) (resp. (ΓS_2)). Also, $A = (\mu_A, \nu_A)$ is said to be an intuitionistic fuzzy Γ -subsemigroup (briefly $IF\Gamma S$) of S if it is both a first and a second intuitionistic fuzzy Γ -subsemigroup.

Theorem 3.2. If U is a Γ -subsemigroup of S, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma S$ of S.

Proof. Let $x, y \in S$ and $\gamma \in \Gamma$. From the hypothesis, $x\gamma y \in U$ if $x, y \in U$. In this case

$$\chi_U(x\gamma y) = 1 \ge \min\{\chi_U(x), \chi_U(y)\}$$

and

$$\bar{\chi}_{U}(x\gamma y) = 1 - \chi_{U}(x\gamma y)$$

$$\leq 1 - \min\{\chi_{U}(x), \chi_{U}(y)\}$$

$$= \max\{1 - \chi_{U}(x), 1 - \chi_{U}(y)\}$$

$$= \max\{\bar{\chi}_{U}(x), \bar{\chi}_{U}(y)\}.$$

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Thus

$$\chi_U(x\gamma y) \ge 0 = \min\{\chi_U(x), \chi_U(y)\}$$

and

$$\max\{\bar{\chi}_{U}(x), \bar{\chi}_{U}(y)\} = \max\{1 - \chi_{U}(x), 1 - \chi_{U}(y)\}$$
$$= 1 - \min\{\chi_{U}(x), \chi_{U}(y)\}$$
$$= 1 \ge \bar{\chi}_{U}(x\gamma y).$$

This completes the proof.

Theorem 3.3. Let U be a non-empty subset of S. If $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma S_1$ or $IF\Gamma S_2$ of S, then U is a Γ -subsemigroup of S.

Proof. Suppose that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma S_1$ of S and $x \in U\Gamma U$. In this case, $x = u\gamma v$ for some $u, v \in U$ and $\gamma \in \Gamma$. It follows from (ΓS_1) that

$$\chi_U(x) = \chi_U(u\gamma v) \ge \min\{\chi_U(u), \chi_U(v)\} = 1.$$

Hence $\chi_U(x) = 1$, i.e. $x \in U$. Thus U is a Γ -subsemigroup of S.

Now, assume that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma S_2$ of S and $x' \in U\Gamma U$. Then $x' = u'\gamma'v'$ for some $u', v' \in U$ and $\gamma' \in \Gamma$. Using (ΓS_2) , we get that

$$\bar{\chi}_U(x') = \bar{\chi}_U(u'\gamma'v')$$

$$\leq \max\{\bar{\chi}_U(u'), \bar{\chi}_U(v')\}$$

$$= \max\{1 - \chi_U(u'), 1 - \chi_U(v')\} = 0$$

and so $\bar{\chi}_U(x') = 1 - \chi_U(x') = 0$. Therefore $\chi_U(x') = 1$, i.e. $x' \in U$. This completes the proof.

Definition 3.4. For an IFS $A = (\mu_A, \nu_A)$ in S, consider the following axioms: $(L\Gamma I_1)$ $\mu_A(x\gamma y) \geq \mu_A(y)$, $(L\Gamma I_2)$ $\nu_A(x\gamma y) \leq \nu_A(y)$

for all $x, y \in S$ and $\gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called a first (resp. second) intuitionistic fuzzy left Γ -ideal (briefly $IFL\Gamma I_1$ (resp. $IFL\Gamma I_2$)) of S if it satisfies $(L\Gamma I_1)$ (resp. $(L\Gamma I_2)$). Also, $A = (\mu_A, \nu_A)$ is said to be an intuitionistic fuzzy left Γ -ideal (briefly $IFL\Gamma I$) of S if it is both a first and a second intuitionistic fuzzy left Γ -ideal.

Definition 3.5. For an IFS $A = (\mu_A, \nu_A)$ in S, consider the following axioms:

 $(R\Gamma I_1) \ \mu_A(x\gamma y) \ge \mu_A(x),$

$$(R\Gamma I_2) \ \nu_A(x\gamma y) \le \nu_A(x)$$

for all $x, y \in S$ and $\gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called a first (resp. second) intuitionistic fuzzy right Γ -ideal (briefly $IFR\Gamma I_1$ (resp. $IFR\Gamma I_2$)) of S if it satisfies $(R\Gamma I_1)$ (resp. $(R\Gamma I_2)$). Also, $A = (\mu_A, \nu_A)$ is said to be an intuitionistic fuzzy right Γ -ideal (briefly $IFR\Gamma I$) of S if it is both a first and a second intuitionistic fuzzy right Γ -ideal.

Definition 3.6. Let $A = (\mu_A, \nu_A)$ be an IFS in S. Then $A = (\mu_A, \nu_A)$ is called an *intuitionistic fuzzy* Γ-ideal (briefly $IF\Gamma I$) of S if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy right Γ-ideal.

Proposition 3.7. Let U be a left-zero Γ -subsemigroup of S. If $A = (\mu_A, \nu_A)$ is an $IFL\Gamma I$ of S, then the restriction of A to U is constant, that is, A(x) = A(y) for all $x, y \in U$.

Proof. Let $x, y \in U$. Since U is left-zero, $x\gamma y = x$ and $y\gamma x = y$ for all $\gamma \in \Gamma$. In this case, from the hypothesis, we have that

$$\mu_A(x) = \mu_A(x\gamma y) \ge \mu_A(y),$$

$$\mu_A(y) = \mu_A(y\gamma x) \ge \mu_A(x)$$

and

$$\nu_A(x) = \nu_A(x\gamma y) \le \nu_A(y),$$

$$\nu_A(y) = \nu_A(y\gamma x) \le \nu_A(x).$$

Thus we obtain $\mu_A(x) = \mu_A(y)$ and $\nu_A(x) = \nu_A(y)$ for all $x, y \in U$. Hence A(x) = A(y) for all $x, y \in U$.

Lemma 3.8. If U is a left Γ -ideal of S, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFL Γ I of S.

Proof. Let $x,y\in S$ and $\gamma\in\Gamma.$ Since U is a left Γ -ideal of S, $x\gamma y\in U$ if $y\in U.$ It follows that

$$\chi_U(x\gamma y) = 1 = \chi_U(y)$$

and

$$\bar{\chi}_U(x\gamma y) = 1 - \chi_U(x\gamma y) = 0 = 1 - \chi_U(y) = \bar{\chi}_U(y).$$

If $y \notin U$, then $\chi_U(y) = 0$. In this case

$$\chi_U(x\gamma y) \ge 0 = \chi_U(y)$$

and

$$\bar{\chi}_U(y) = 1 - \chi_U(y) = 1 \ge \bar{\chi}_U(x\gamma y).$$

Consequently, $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFL\Gamma I$ of S.

Theorem 3.9. Let $A = (\mu_A, \nu_A)$ be an IFL Γ I of S. If E_S is a left-zero Γ -subsemigroup of S, then A(e) = A(e') for all $e, e' \in E_S$.

Proof. Let $e, e' \in E_S$. From the hypothesis, $e\gamma e' = e$ and $e'\gamma e = e'$ for all $\gamma \in \Gamma$. Thus, since $A = (\mu_A, \nu_A)$ is an $IFL\Gamma I$ of S, we get that

$$\mu_A(e) = \mu_A(e\gamma e') \ge \mu_A(e'),$$

$$\mu_A(e') = \mu_A(e'\gamma e) \ge \mu_A(e)$$

and

$$\nu_A(e) = \nu_A(e\gamma e') \le \nu_A(e'),$$

$$\nu_A(e') = \nu_A(e'\gamma e) \le \nu_A(e).$$

Hence we have $\mu_A(e) = \mu_A(e')$ and $\nu_A(e) = \nu_A(e')$ for all $e, e' \in E_S$. This completes the proof.

Theorem 3.10. Let S be regular. If, for every non-empty subset U of S, $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFL\Gamma I_1$ (or $IFL\Gamma I_2$) of S and $\tilde{U}(e) = \tilde{U}(e')$ for all $e, e' \in E_S$, then E_S is a left-zero Γ -subsemigroup of S.

Proof. Since S is regular, E_S is non-empty. Let $e = e\gamma e$, $e' = e'\gamma'e' \in E_S$ where $\gamma, \gamma' \in \Gamma$. Because of S is regular, $L[e] = S\Gamma e$. Since L[e] is a left Γ -ideal of S, we obtain $\tilde{L}[e] = (\chi_{L[e]}, \bar{\chi}_{L[e]})$ is an $IFL\Gamma I_1$ (or $IFL\Gamma I_2$) of S by Lemma 3.8. In this case, from the hypothesis, we get that

$$\chi_{L[e]}(e') = \chi_{L[e]}(e) = 1 \text{ (or } \bar{\chi}_{L[e]}(e') = \bar{\chi}_{L[e]}(e) = 0).$$

Hence $e' \in L[e] = S\Gamma e$. Thus

$$e' = x\beta e = x\beta(e\gamma e) = (x\beta e)\gamma e = e'\gamma e$$

for some $x \in S$ and $\beta \in \Gamma$. Consequently, E_S is a left-zero Γ -semigroup. \square

Definition 3.11. For an *IFS* $A = (\mu_A, \nu_A)$ in S, consider the following axioms:

$$(I\Gamma I_1) \ \mu_A(x\beta s\gamma y) \ge \mu_A(s),$$

 $(I\Gamma I_2) \ \nu_A(x\beta s\gamma y) \le \nu_A(s)$

for all $s, x, y \in S$ and $\beta, \gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called a first (resp. second) intuitionistic fuzzy interior Γ -ideal (briefly $IFI\Gamma I_1$ (resp. $IFI\Gamma I_2$)) of S if it is an $IF\Gamma S_1$ (resp. $IF\Gamma S_2$) satisfying ($I\Gamma I_1$) (resp. ($I\Gamma I_2$)). Also, $A = (\mu_A, \nu_A)$ is said to be an intuitionistic fuzzy interior Γ -ideal (briefly $IFI\Gamma I$) of S if it is both a first and a second intuitionistic fuzzy interior Γ -ideal.

Remark 3.12. It is clear that every $IF\Gamma I$ of S is an $IFI\Gamma I$ of S.

Theorem 3.13. If S is regular, then every $IFI\Gamma I$ of S is an $IF\Gamma I$ of S.

Proof. Let $A = (\mu_A, \nu_A)$ be an $IFI\Gamma I$ of S and $x, y \in S$. In this case, because of S is regular, there exist $s, s' \in S$ and $\beta, \beta', \gamma, \gamma' \in \Gamma$ such that $x = x\beta s\gamma x$

and $y = y\beta' s' \gamma' y$. Thus

$$\mu_A(x\alpha'y) = \mu_A(x\alpha'(y\beta's'\gamma'y))$$
$$= \mu_A(x\alpha'y\beta'(s'\gamma'y))$$
$$\geq \mu_A(y)$$

and

$$\nu_A(x\alpha'y) = \nu_A(x\alpha'(y\beta's'\gamma'y))$$
$$= \nu_A(x\alpha'y\beta'(s'\gamma'y))$$
$$\leq \nu_A(y)$$

for all $\alpha' \in \Gamma$. It follows that $A = (\mu_A, \nu_A)$ is an $IFL\Gamma I$ of S. Similarly, we can show that $A = (\mu_A, \nu_A)$ is an $IFR\Gamma I$ of S. This completes the proof. \square

Theorem 3.14. If U is an interior Γ -ideal of S, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFI\Gamma I$ of S.

Proof. Since U is a Γ -subsemigroup of S, we have that $\tilde{U}=(\chi_U,\bar{\chi}_U)$ is an $IF\Gamma S$ of S by Theorem 3.2. Let $s,x,y\in S$ and $\beta,\gamma\in\Gamma$. From the hypothesis, $x\beta s\gamma y\in U$ if $s\in U$. In this case

$$\chi_U(x\beta s\gamma y)=1=\chi_U(s)$$

and

$$\bar{\chi}_U(x\beta s\gamma y) = 1 - \chi_U(x\beta s\gamma y) = 0 = 1 - \chi_U(s) = \bar{\chi}_U(s).$$

If $s \notin U$, then $\chi_U(s) = 0$. Thus

$$\chi_U(x\beta s\gamma y) \ge 0 = \chi_U(s)$$

and

$$\bar{\chi}_U(s) = 1 - \chi_U(s) = 1 \ge \bar{\chi}_U(x\beta s \gamma y).$$

Consequently, $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFI\Gamma I$ of S.

Theorem 3.15. Let S be regular and U a non-empty subset of S. If $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFI\Gamma I_1$ or $IFI\Gamma I_2$ of S, then U is an interior Γ -ideal of S.

Proof. It is clear that U is a Γ -subsemigroup of S by Theorem 3.3. Suppose that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFI\Gamma I_1$ of S and $x \in S\Gamma U\Gamma S$. In this case, $x = s\beta u\gamma t$ for some $s, t \in S$, $u \in U$ and $\beta, \gamma \in \Gamma$. It follows from $(I\Gamma I_1)$ that

$$\chi_U(x) = \chi_U(s\beta u\gamma t) \ge \chi_U(u) = 1.$$

Hence $\chi_U(x) = 1$, i.e. $x \in U$. Thus U is an interior Γ -ideal of S.

Now, assume that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFI\Gamma I_2$ of S and $x' \in S\Gamma U\Gamma S$. Then $x' = s'\beta'u'\gamma't'$ for some $s', t' \in S$, $u' \in U$ and $\beta', \gamma' \in \Gamma$. Using $(I\Gamma I_2)$, we obtain

$$\bar{\chi}_U(x') = \bar{\chi}_U(s'\beta'u'\gamma't') \le \bar{\chi}_U(u') = 1 - \chi_U(u') = 0$$

and so $\bar{\chi}_U(x') = 1 - \chi_U(x') = 0$. Therefore $\chi_U(x') = 1$, i.e. $x' \in U$. This completes the proof.

Definition 3.16. S is called first (resp. second) intuitionistic fuzzy left simple if every $IFL\Gamma I_1$ (resp. $IFL\Gamma I_2$) of S is constant. Also, S is said to be intuitionistic fuzzy left simple if it is both first and second intuitionistic fuzzy left simple, i.e. every $IFL\Gamma I$ of S is constant.

Theorem 3.17. If S is left simple, then S is intuitionistic fuzzy left simple.

Proof. Let $A = (\mu_A, \nu_A)$ be an $IFL\Gamma I$ of S and $x, x' \in S$. In this case, because of S is left simple, there exist $s, s' \in S$ and $\gamma, \gamma' \in \Gamma$ such that $x = s\gamma x'$ and $x' = s'\gamma'x$. Thus, since $A = (\mu_A, \nu_A)$ is an $IFL\Gamma I$ of S, we get that

$$\mu_A(x) = \mu_A(s\gamma x') \ge \mu_A(x'),$$

$$\mu_A(x') = \mu_A(s'\gamma' x) \ge \mu_A(x)$$

and

$$u_A(x) = \nu_A(s\gamma x') \le \nu_A(x'),$$

$$\nu_A(x') = \nu_A(s'\gamma'x) \le \nu_A(x).$$

Hence we have $\mu_A(x) = \mu_A(x')$ and $\nu_A(x) = \nu_A(x')$ for all $x, x' \in S$, that is, A(x) = A(x') for all $x, x' \in S$. Consequently, S is intuitionistic fuzzy left simple.

Theorem 3.18. If S is first or second intuitionistic fuzzy left simple, then S is left simple.

Proof. Let U be a left Γ -ideal of S. Suppose that S is first (or second) intuitionistic fuzzy left simple. Because of $\tilde{U}=(\chi_U,\bar{\chi}_U)$ is an $IFL\Gamma I$ of S by Lemma 3.8, $\tilde{U}=(\chi_U,\bar{\chi}_U)$ is an $IFL\Gamma I_1$ (and $IFL\Gamma I_2$) of S. From the hypothesis, χ_U (and $\bar{\chi}_U$) is constant. Since U is non-empty, it follows that $\chi_U=\mathbf{1}$ (or $\bar{\chi}_U=\mathbf{0}$), where $\mathbf{1}$ and $\mathbf{0}$ are fuzzy sets in S defined by $\mathbf{1}(x)=1$ and $\mathbf{0}(x)=0$ for all $x\in S$, respectively. Thus $x\in U$ for all $x\in S$. This completes the proof.

Theorem 3.19. If S is simple, then every $IFI\Gamma I$ of S is constant.

Proof. Let $A = (\mu_A, \nu_A)$ be an $IFI\Gamma I$ of S and $x, x' \in S$. In this case, because of S is simple, there exist $s, s', t, t' \in S$ and $\beta, \beta', \gamma, \gamma' \in \Gamma$ such that $x = s\beta x'\gamma t$ and $x' = s'\beta'x\gamma't'$. Thus, since $A = (\mu_A, \nu_A)$ is an $IFI\Gamma I$ of S, we obtain that

$$\mu_A(x) = \mu_A(s\beta x'\gamma t) \ge \mu_A(x'),$$

$$\mu_A(x') = \mu_A(s'\beta'x\gamma't') \ge \mu_A(x)$$

and

$$\nu_A(x) = \nu_A(s\beta x'\gamma t) \le \nu_A(x'),$$

$$\nu_A(x') = \nu_A(s'\beta'x\gamma't') \le \nu_A(x).$$

Hence we get $\mu_A(x) = \mu_A(x')$ and $\nu_A(x) = \nu_A(x')$ for all $x, x' \in S$. Consequently, $A = (\mu_A, \nu_A)$ is constant.

Definition 3.20. For an $IF\Gamma S$ $A=(\mu_A,\nu_A)$ in S, consider the following axioms:

$$(\Gamma B_1) \ \mu_A(x\beta s\gamma y) \ge \min\{\mu_A(x), \mu_A(y)\}, (\Gamma B_2) \ \nu_A(x\beta s\gamma y) \le \max\{\nu_A(x), \nu_A(y)\}$$

for all $s, x, y \in S$ and $\beta, \gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called an *intuitionistic* fuzzy Γ -bi-ideal (briefly $IF\Gamma B$) of S if it satisfies (ΓB_1) and (ΓB_2) .

Remark 3.21. It is clear that every $IF\Gamma I$ of S is an $IF\Gamma B$ of S.

Theorem 3.22. If S is left simple, then every $IF\Gamma B$ of S is an $IFR\Gamma I$ of S.

Proof. Let $A = (\mu_A, \nu_A)$ be an $IF\Gamma B$ of S and $x, y \in S$. In this case, from the hypothesis, there exist $s \in S$ and $\gamma \in \Gamma$ such that $y = s\gamma x$. Thus, because of $A = (\mu_A, \nu_A)$ is an $IF\Gamma B$ of S, we have that

$$\mu_A(x\beta y) = \mu_A(x\beta s\gamma x)$$

$$\geq \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$$

and

$$\nu_A(x\beta y) = \nu_A(x\beta s\gamma x)$$

$$\leq \max\{\nu_A(x), \nu_A(x)\} = \nu_A(x)$$

for all $\beta \in \Gamma$. It follows that $A = (\mu_A, \nu_A)$ is an $IFR\Gamma I$ of S.

Proposition 3.23. If U is a Γ -bi-ideal of S, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma B$ of S.

Proof. Since U is a Γ -subsemigroup of S, we obtain that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma S$ of S by Theorem 3.2. Let $s, x, y \in S$ and $\beta, \gamma \in \Gamma$. From the hypothesis, $x\beta s\gamma y \in U$ if $x, y \in U$. In this case

$$\chi_U(x\beta s\gamma y) = 1 = \min\{\chi_U(x), \chi_U(y)\}\$$

and

$$\bar{\chi}_U(x\beta s\gamma y) = 1 - \chi_U(x\beta s\gamma y) = 0 = \max\{\bar{\chi}_U(x), \bar{\chi}_U(y)\}.$$

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Thus

$$\chi_U(x\beta s\gamma y) \ge 0 = \min\{\chi_U(x), \chi_U(y)\}$$

and

$$\max\{\bar{\chi}_{U}(x), \bar{\chi}_{U}(y)\} = \max\{1 - \chi_{U}(x), 1 - \chi_{U}(y)\}$$
$$= 1 - \min\{\chi_{U}(x), \chi_{U}(y)\}$$
$$= 1 \ge \bar{\chi}_{U}(x\beta s \gamma y).$$

Consequently, $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma B$ of S.

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), no. 1, 87–96.
- [2] _____, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), no. 2, 137-142.
- [3] K. H. Kim and Y. B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Math. Sci. 27 (2001), no. 5, 261–267.
- [4] _____, Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33 (2002), no. 4, 443–449.
- [5] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), no. 2, 203–215.
- [6] _____, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8 (1982), no. 1, 71–79.
- [7] N. K. Saha, On Γ-semigroup II, Bull. Calcutta Math. Soc. 79 (1987), no. 6, 331–335.
- [8] _____, On Γ-semigroup III, Bull. Calcutta Math. Soc. 80 (1988), no. 1, 1–12.
- [9] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Calcutta Math. Soc. 78 (1986), no. 3, 180–186.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

Mustafa Uçkun

DEPARTMENT OF MATHEMATICS

FACULTY OF ARTS AND SCIENCES

İNÖNÜ UNIVERSITY, 44069 MALATYA, TURKEY

E-mail address: muckun@inonu.edu.tr

MEHMET ALI ÖZTÜRK

DEPARTMENT OF MATHEMATICS

FACULTY OF ARTS AND SCIENCES

CUMHURIYET UNIVERSITY, 58140 SIVAS, TURKEY

E-mail address: maozturk@cumhuriyet.edu.tr

Young Bae Jun

DEPARTMENT OF MATHEMATICS EDUCATION

GYEONGSANG NATIONAL UNIVERSITY

CHINJU 660-701, KOREA

E-mail address: ybjun@gsnu.ac.kr