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1. Introduction as wide flammability limit, fast burning velocity,
and low ignition energy]’z) enable a stable engine
operation which results in high thermal efficiency
and low NOx emission level, but backfire still
occurs at higher load conditions. Hence in order to

The combustion characteristics of hydrogen such
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Table 1 Specifications of test engine

Combustion chamber Pent-roof
Valve mechanism DOHC
BorexStroke, mm 86x86
Compression ratio 10.5

Cam phase control MCVVT system
Original valve timing :

- Intake valve opening 10° CA BTC
- Intake valve closing 67° CA ABC
- Exhaust valve opening 34° CA BBC
- Exhaust valve closing 10° CA ATC

put hydrogen-fueled engine with external mixture
into the practice use, the countermeasure of
backfire control is an important problem. Backfire
phenomenon is well known as Hp-air mixture in
intake pipe is burned by backflow of fast flame
which is pre-ignited due to unknown ignition
source in the combustion chamber during valve
overlap period.
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Fig. 1 Configuration of hydrogen-fueled engine with external
mixture and MCVVT system
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By considering the above backfire phenomenon,
the decrease of the ignition source's temperature
and burning velocity by using cooling approaches
and/or lean bum techniques is considered to
prevent backfire in a H, engine with external

mixture by many researchers®®.

However, the
distinct methods for preventing backfire are not
established. It seems difficult to control the
unknown ignition source and the rapid burning
velocity. In case that valve overlap period is
reduced, however, backfire will be avoided by the
fact that the pre-ignited flame cannot flow
backward into intake system.

In order to prove the feasibility of backfire
control by the reduction of valve overlap period,
first, a single-cylinder research engine with a
mechanical continuous variable valve timing system
(MCVVT) which a wide range of valve overlap
period can be continuously varied during the engine
operation, has been developed by authors'*'?,

In this investigation, overall engine performance
and improvement of backfire limit equivalence
ratio are analyzed and evaluated to realize high
power H, engine with external mixture.

Exhaust cam gear Intake cam gear

Timing gear

Auto Idle gear
tensioner

Crankshaft gear

Fig. 2 Schematic diagram of MCVVT system
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2. Experiments and methods

2.1. Hydrogen-Fueled Engine and
MCVVT System

The test engine used is a single-cylinder
four-stroke SI hydrogen-fueled engine, which is
converted from a 2.0 L DOHC commercial engine.
Fig. 1 shows the configuration of the H, engine
with external mixture and the mechanical variable
valve timing system. Flat-head piston is used to
form the pent-proof combustion chamber, and
compression ratio is fixed at 10.5 : 1. Engine
specifications are shown in Table 1.

A detailed structure of MCVVT system that is able
to control intake/exhaust valve timings independently
is shown in Fig. 2. The fundamental principle of
MCVVT systemmz) is that the angle of
intake/exhaust cam gear (a) is varied (advanced or
retarded) by change of the angle of timing gear ([3)
as timing gear moves from post 1 to post 2 in figure.

2.2. Experimental setup

Schematic diagram of experimental setup

presented in Fig. 3 consists of hydrogen-fueled
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Fig. 3 Schematic diagram of experimental setup
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engine, AC dynamometer, hydrogen gas supply
system, cooling system, lubricant system, and data
acquisition system. Hydrogen gas charged by
12-15 MPa in the commercial high-pressure bomb
is decompressed to 1.5 MPa by a pressure
regulator and is controlled to 0.3 MPa by a
secondary precise regulator installed in front of the
H, mass flow meter. Hydrogen gas was then
injected to intake port by using a CNG injector.
Injection timing and injection duration can be
adjusted by the injector control system. Airflow
rate and hydrogen flow rate are measured by an
orifice and a H, mass flow controllef MFC/MFM
Manager, FM-30V4).
monitored using a piezoelectric transducer(Kistler
6061-B) inserted in the cylinder head.  For
detecting inlet and exhaust pipe pressures, two
piezo-resistive types(Kistler 4045A-1 MPa and 0.5
MPa) are utilized. Coolant water is supplied to a
modified cylinder head and a block, separately.
The coolant temperature is controlled by coolant
flow valve at outlet and fixed at 70C. The
measured data is stored in data recorder.

In-cylinder pressure is

2.3. Experimental methods
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Fig. 4 Variation of COVimep and COVpmax as a function of
various valve overlap period at $=0.6, 1600 rpm, WOT
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The experimental variables is valve overlap
period(0°, 10°, 20°, 30°, 40°, and 50°CA, and
respectively labeled as VOPO, VOP10, VOP20,
VOP30, VOP40, VOP50). Valve overlap period is
analogically varied by changing cam phase angle
of intake valve while exhaust valve timing is
fixed. For each VOP, fuel/air equivalence ratio is
varied from a lean limit of 0.25(¢=0.25) at which
stable operation was ensured to a rich limit in
which backfire was detected. All experiments are
carried out at a fixed engine speed of 1600 rpm, a
wide-open throttle, and MBT(Maximum Brake
Torque) conditions.

3. Results and Discussion

3.1. Performance Characteristics with
Valve Overlap Period

The coefficient of variations in indicated mean
effective pressure(COVimep) and in maximum
cylinder pressure(COVpmax) as a function of VOP
at constant fuel/air equivalence ratio are indicated
in Fig. 4. It comes clearly out of this figure that
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Fig. 5 Volumetric efficiency versus VOP for various fuel/air
equivalence ratio
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at 1600 pm, WOT, and ¢=0.6, beyond VOP
between 0 and 40°CA, COVimep and COVpmax
of all VOP are less than 5% which means all
engine operating conditions under the high
drive-ability.

One possible explanation for above results is
that there is the good mixing of the injected
hydrogen and the intake air in the intake system.
Enhancement of mixing rate results in stable
combustion of hydrogen due to the fast burning
velocity and good ignitability of hydrogen engine.
Also the shorter flame development angle is, the
lower COV becomes as COV is mainly affected
by flame development angle and then the more
stable operation may accomplish. These effects
were also reported by some researchers™”.

Fig. 5 shows volumetric efficiency versus valve
overlap period for each fuel/air equivalence ratio
at 1600 rpm, WOT, and MBT.

As indicated in figure, the volumetric efficiency
improves with increase of VOP except decreasing
at VOP50. Besides, as volumetric efficiency is

decreased with the increasing of fuel/air
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Fig. 6 Effect of fuel/air equivalence ratio on brake torque for
each VOP
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equivalence ratio for a given valve overlap period.
The tendency of results agrees with those reported
by previous researches” ",

Fig. 6 shows the variation of brake torque with
fuel/air equivalence ratio at 1600 rpm, MTB, and
WOT for various valve overlap period. This figure
shows the increasing tendency of brake torque
with increase of valve overlap period.

For a given valve overlap period, increasing the
fuel/air equivalence ratio resulted in a proportional
increase in brake torque due to increased supply
energy. Also for VOPO and VOP10, as fuel/air
equivalence ratio is over 1.0 the brake torque
It further

suspected that for the hydrogen engine using

show the decreasing tendency. is
premixed charged or external mixture formation,
as fuel/air equivalence ratio becomes rich, less air
is usually inducted by the injection of hydrogen in
intake pipe and hence less oxygen into the engine
cylinder resulting in incomplete combustion and a
loss of brake torque.

Additionally the other important observation that

the distinct line of the safety operation zone and
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Fig. 7 Traces of cylinder pressure versus crank angle for

various VOP
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the zone of backfire occurrence for all valve
overlap periods indicates the line of the backfire
limit equivalence ratios. Generally it is found that
the value of backfire limit equivalence ratio is
increased with the decrease of valve overlap period.
The tendency will be explained in section 3.3.

3.2. Combustion characteristics

The experimental results of in-cylinder pressure,
and mass fraction burned rate versus crank angle
are indicated in Fig. 7 and Fig. 8, respectively.
Here, the experimental condition is engine
speed=1600 rmpm, ¢=0.6, WOT and MBT. The
mass fraction bumed rate is obtained from the
data of in-cylinder pressure shown in Fig. 7. The
figure shows that the general shape of the mass
fraction burned rate is similar. This shows that no
major difference exist between the combustion
phenomena of various VOP at constant fuel/air
equivalence ratio and constant spark timing.

Only the different in the beginning and late
stages of flame-development makes their shape
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Fig. 8 Mass fraction burned rate versus crank angle for
various VOP at ¢=0.6
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Fig. 9 Rate of heat release versus crank angle for various
VOP at ¢=0.6

and total heat release different. As indicated in
Fig. 7, the maximum pressure of cycle is the
highest with VOP40 case. Under the same
condition, the difference of maximum pressure
depends on the ignition delay and the homogeneity
of mixture. The spark timing adjusted for all
VOPs is around 7°CA BTC. It seems that this
phenomenon results from the higher compression
temperature and pressure and more homogeneous
fuel/air mixture as VOP increases The relation
between variation in combustion rate and variation
in cylinder pressure is very complex. Also it
changes in the shape and magnitude of the
heat-release rate profile affects the pressure. As far
as VOP increases, the intake air is increased and
thus the rate of heat release becomes larger, then
longer the combustion duration are attained
respectively. These tendencies are verified in Fig.
9 and Fig. 10.

3.3. Extension of Backfire Limit
Equivalence Ratio

Fig. 11 shows brake mean effective pressure
and BFL equivalence ratio versus valve overlap
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Fig. 10 Combustion duration with respect to various VOP at
o =0.6

period. With MCVVT system, it shows the
increasing tendency of backfire limit equivalence
ratio according to the decrease of valve overlap
period. As shown in figure, backfire limit
equivalence ratio improves from 0.82 to 1.19 or
about 45% of enhancement when valve overlap
period changes from VOP20 to VOP0. However,
brake torque is reduced. The figure clearly shows
that BMEP at VOPO is 0.11 MPa lower than that
of VOP20. It means that the valve overlap period
strongly affects the backfire occurrence. This
reason may be that enough fresh charge is not
allowed to enter the cylinder under experimental
condition. Particularly, at VOP50, the values of
torque and fuel/air equivalence ratio are
significantly ~ decreased. Also, backfire limit
equivalence ratio and BMEP of VOP50 is 39% and
24.5% lower than that of VOP20, respectively. It
may be that volumetric efficiency decreases by the
presence of hydrogen gas in the intake pipe and
valve overlap period is absurdly large.

As above-mentioned, it clearly indicates that in
the shorter valve overlap period the impossibility of
backfire occurrence may be attained by the decrease
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Fig. 11 Variation of BMEP versus VOP for various fuel/air
equivalence ratio

of the available supplied energy. It is thought that
the reason of this effect is the decreasing tendency
of combustion chamber's temperature with decrease
of backfire
phenomenon may be respectively avoided.

It is requested that the feasibility of extension

valve overlap period.  Hence

of backfire limit equivalence ratio must be
confirmed by the stability of engine operation.
Hence the variation of COVimep and COVpmax
under different valve overlap period at backfire
limit equivalence ratio are estimated and presented
in Fig.12. This figure indicates that all engine
operating conditions at backfire limit equivalence
ratio giving the COVimep and COVpmax as low
as 5%. As discussed earlier in Fig. 4 the same
explanation is valid for this case.

A precautionary measure was taken to eliminate
the possibility of backfire control by the variation
of valve overlap period. In the present works, it is
doubted that the improvement of backfire limit
equivalence ratio is attained by the decrease of
supplied energy. Hence it is necessary to study in
more detail the effects of VOP on backfire
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Fig. 12 COVimep and COVpmax with respect to valve
overlap period at 1600 rpm, WOT, MBT, and ¢BFL

occurrence when supplied energy maintains
constantly under various valve overlap period in
order to develop better performance of

hydrogen-fueled engine with external mixture.

4. Conclusion

It has been evident that an appropriately
designed MCVVT
operation of a hydrogen-fueled engine with
external mixture over a wide range of loads and

system ensures successful

valve overlap periods without causing any

undesirable combustion phenomenon. In summary,

1) Accordance to the variation of valve overlap
period, the behavior of the basic qualitative
performances of the test engine is similar to
conventional engines but quantitative results
have a little difference.

2) Backfire
significantly with decrease of valve overlap

limit equivalence ratio increases

period. Backfire limit equivalence ratio with
VOPO is estimated to be 1.45 times higher than
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that of VOP20 and brake torque is about 0.11
MPa less than respectively. However, brake
torque or power output is limited by lower
supplied energy due to reduction in volumetric
efficiency.

3) Under above experimental conditions, the
engine stable as
coefficient of variations in IMEP and in

combustion process is

maximum pressure are less than 5%.

4) The increase of backfire limit equivalence ratio
with the decreasing tendency of valve overlap
period is analyzed by the diminution of
supplied energy and the temperature of

combustion chamber. Thus further investigation

is required in case of the same supplied energy
for better performance characteristics and
enhancement of the overall fuel economy of

hydrogen powered vehicles.
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