인공태양을 이용한 모노리스 적용 반응기에서 2단계 열화학적 물분해 연구

2-Step Thermochemical Water Splitting on a Active Material Washcoated Monolith Using a Solar Simulator as Heat Source

  • 강경수 (한국에너지기술연구원 열화학수소연구단) ;
  • 김창희 (한국에너지기술연구원 열화학수소연구단) ;
  • 박주식 (한국에너지기술연구원 열화학수소연구단)
  • Kang, Kyoung-Soo (Hydrogen Energy Research Croup, Korea Institute of Energy Research) ;
  • Kim, Chang-Hee (Hydrogen Energy Research Croup, Korea Institute of Energy Research) ;
  • Park, Chu-Sik (Hydrogen Energy Research Croup, Korea Institute of Energy Research)
  • 발행 : 2007.06.15

초록

Solar energy conversion to hydrogen was carried out via a two-step thermochemical water splitting using metal oxide redox pair. To simulate the solar radiation, a 7 kW short arc Xe-lamp was used. Partially reduced iron oxide and cerium oxide have the water splitting ability, respectively. So, $Fe_3O_4$ supported on $CeO_2$ was selected as the active material. $Fe_3O_4/CeO_2$(20 wt/80 wt%) was prepared by impregnation method, then the active material was washcoated on the ceramic honeycomb monolith made of mullite and cordierite. Oxygen was released at the reduction step($1673{\sim}1823\;K$) and hydrogen was produced from water at lower temperature($873{\sim}1273\;K$). The result demonstrate the possibility of the 2-step thermochemical water splitting hydrogen production by the active material washcoated monolith. And hydrogen and oxygen was produced separately without any separation process in a monolith installed reactor. But the SEM and EDX analysis results revealed that the support used in this experiment is not suitable due to the thermal instability and coating material migration.

키워드

참고문헌

  1. T. Nakamura, 'Hydrogen production from water utilizing solar heat at high temperaures' Solar Energy, Vol. 19, 1977, pp. 467-478 https://doi.org/10.1016/0038-092X(77)90102-5
  2. F. Sibieude, M. Ducarroir, A. Tofighi, J. Ambriz, 'High temperature experiments with a solar furnace: the decomposition of $Fe_{3}O_{4}$, $Mn_{3}O_{4}$, CdO', Int. J. Hydrogen Energy, Vol. 7, No.1, 1982, pp. 79-88 https://doi.org/10.1016/0360-3199(82)90209-9
  3. M. Lundberg, 'Model calculations on some feasible two-step water splitting processes', Int. J. Hydrogen Energy, Vol. 18, No. 5, 1993, pp. 369-376 https://doi.org/10.1016/0360-3199(93)90214-U
  4. K. Ehrensberger, A. Frei, P. Kuhn, H. Oswald, P. Hug. 'Comparative Experimental investigations of the water splitting reaction with iron oxide $Fe_{1-y}O $ and iron manganese oxides$(Fe_{1-y}Mn_{x})_{1-y}O$', Solid State lonics, Vol. 78, 1995, pp. 151-160 https://doi.org/10.1016/0167-2738(95)00019-3
  5. T. Tamaura, A. Steinfeld, P. Kuhn, K. Ehrensberger, 'Production of solar hydorgen by a novel, 2-step, water -splitting thermochemical cycle', Energy, Vol. 20, No.4, 1995, pp. 325-330 https://doi.org/10.1016/0360-5442(94)00099-O
  6. K. Otsuka, M. Hatano, A. Morikawa, 'Hydrogen from water by reduced cerium oxide', J. of Catalysis, Vol. 79, 1983, pp.493-496 https://doi.org/10.1016/0021-9517(83)90346-9
  7. S. Abanades, G. Flamant, 'Thermochemical hydrogen production from a two-step solar driven water-splitting cycle based on cerium oxides', Solar Energy, Vol. 80, No. 12, 2006, pp. 1611-1623 https://doi.org/10.1016/j.solener.2005.12.005
  8. A. Hunt, J. Ayer, P. Hull, F. Miller, F. Noring, D. Worth, 'Solar radiant heating of gas-particle mixtures', Berkeley, CA, Lawrence Berkeley Laboratory LBL-22743, University of California, 1986
  9. A. Meier, J. Ganz, A. Steinfeld, 'Modeling of a novel high-temperature solar chemical reactor', Chem. Eng. Sci., Vol. 51, No. 11, 1996, pp. 3181-3186 https://doi.org/10.1016/0009-2509(96)00217-5
  10. A. Steinfeld, M. Brack, A. Meier, A. Weidenkaff, D. Wuillenmin, 'A solar chemical reactor for co-production of zinc and synthesis gas', Energy, Vol. 23, No. 10, 1998, pp. 803-814 https://doi.org/10.1016/S0360-5442(98)00026-7
  11. M. Roeb, C. Sattler, R. Kluser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, 'Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides', J. Solar Energy Eng., Vol. 128, No.2, 2006, pp. 125-133 https://doi.org/10.1115/1.2183804
  12. H. Kaneko, A. Fuse, T. Miura, H. Ishihara, Y. Tamaura, 'Two-step water splitting with concentrated solar heat using rotary-type solar furnace', solarPACES2006, proceedings
  13. T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, N. Satou, 'Thermochemical hydrogen production by a redox system of $ZrO_{2}$-supported Co-Ferrite', Solar Energy, Vol. 78, 2005, pp. 623-631 https://doi.org/10.1016/j.solener.2004.04.008
  14. T. Kodama, Y. Nakamuro, T. Mizuno, 'A Two-step thermochemical water splitting by iron-oxide on stabilized Zirconia', J. Solar Energy Eng., Vol. 128, 2006, pp. 3-7 https://doi.org/10.1115/1.1878852
  15. Barin I: Thermochemical Data of pure substances, Part I ,II, VCH Verlags Gesellschaft, Weinheim, 1993
  16. A. Tofighi, Contribution a l'etude de la decomposition des oxydes de fer au foyer d'un four solair. Ph. D. dissertation. INP Toulouse, 1982
  17. A. Weidenkaff, P. Nuesch, A. Wokaun, A.Reller, 'Mechanistic studies of the water-splitting reaction for producing solar hydrogen', Solid State lonics, Vol. 101-103, 1997, pp. 915-922