광어노드의 수소 제조와 광전기 특성에 관한 상관관계 연구

Study on Relation between $H_2$ Evolution and Photoelectrical Properties of Photoanode

  • 배상현 (연세대학교 환경공학과) ;
  • 강준원 (연세대학교 환경공학과) ;
  • 심은정 (충남대학교 화학과) ;
  • 윤재경 (한국에너지기술연구원 화석에너지환경연구본부 온실가스연구센터) ;
  • 주현규 (한국에너지기술연구원 화석에너지환경연구본부 온실가스연구센터)
  • Bae, Sang-Hyun (Dept. of Environ. Engr., Yonsei Univ.) ;
  • Kang, Joon-Won (Dept. of Environ. Engr., Yonsei Univ.) ;
  • Shim, Eun-Jung (Dept. of Chemistry, Chungnam Nat'l Univ.) ;
  • Yoon, Jae-Kyung (Greenhouse Gas Research Center, Fossil Energy & Environment Research Dept., Korea Institute of Energy Research) ;
  • Joo, Hyun-Ku (Greenhouse Gas Research Center, Fossil Energy & Environment Research Dept., Korea Institute of Energy Research)
  • 발행 : 2007.09.15

초록

The present work considers the concept of enzymatic photoelectrochemical generation of hydrogen through water splitting using a Xe lamp as a source of light. A solar cell was applied to the system in order to shift the level of electrochemical energy of the system, resulting in the rate of hydrogen production at $43\;{\mu}mol/(cm^2{\times}hr)$ in cathodic compartment with an anodized tubular $TiO_2$ electrode(ATTE, $5^{\circ}C$/1hr in 0.5 wt% HF-$650^{\circ}C$/5hr). The trend of the rate of hydrogen production, for the ATTEs with different annealing temperature from $350^{\circ}C$ to $850^{\circ}C$, fairly well coincided with the photoelectrical properties measured by potentiostat. The actual chemical bias through imposition of two electrolytes of different pHs between anode(13.68) and cathode(7.5) was 0.24eV.

키워드

참고문헌

  1. 심은정, 배상현, 윤재경, 주현규, '일체형 포토어노드를 활용한 메틸렌블루의 분해', 한국수소 및 신에너지학회 논문집 Vol. 18, No. 1, 2007. 3, pp. 40-45
  2. 심은정, 배상현, 윤재경, 주현규, '광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용', 한국수소 및 신에너지학회 논문집, Vol. 18, No. 2, 2007. 6, pp. 151-156
  3. M. Ashokkumar, 'An overview on semiconductor particulate systems for photoreduction of hydrogen', Int. J. Hydrogen Energy, Vol. 23, No.6, 1998, pp. 427-438 https://doi.org/10.1016/S0360-3199(97)00103-1
  4. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renewable and Sustainable Energy Reviews, Vol. 11, 2007, p. 401 https://doi.org/10.1016/j.rser.2005.01.009
  5. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, 'Titanium oxide nanotube arrays prepared by anodic oxidation', J. Mater. Res., Vol. 16, No. 12, 2001, pp. 3331-3334 https://doi.org/10.1557/JMR.2001.0457
  6. O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, and E. C. Dickey, 'Crystallization and high-temperature structural thermal stability of titanium oxide nanotube arrays', J. Mater. Res., Vol. 18, No. 1, 2003, pp. 156-165 https://doi.org/10.1557/JMR.2003.0022
  7. G. K. Mor, O. K. Vargheese, M. Paulose, N. Mukherjee, and C. A. Grimes, J. Mater. Res. Vol. 18, 2003, pp. 2588-2591 https://doi.org/10.1557/JMR.2003.0362
  8. G. K. Mor, K. Shankar, M. Paulose, O. K. Vargheese, and C. A. Grimes, Nanoletters Vol. 5, 2005, pp. 191-195 https://doi.org/10.1021/nl048301k
  9. M. Paulose, G. K. Mor, O. K. Vargheese, K. Shankar, and C. A. Grimes, J. Photochem. Photobiol. A: Chem., Vol. 178, 2006, pp. 8-15 https://doi.org/10.1016/j.jphotochem.2005.06.013
  10. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energy, Vol. 27, No. 1, 2002, p. 20-21
  11. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energy, Vol. 27, No. 2, 2002, p. 991 https://doi.org/10.1016/S0360-3199(02)00022-8