Numerical Study on Hydrogen Absorption and Expansion Behavior on Palladium

팔라듐에 관한 수소저장과 팽창거동에 관한 수치해석

  • Kim, S.W. (School of Mechanical Engineering, Kumoh National University of Technology) ;
  • Hwang, C.M. (Grad. School of Mechanical Engineering, Kumoh National Univ.) ;
  • Jang, T.I. (Dept. of Building Equipment System Engineering, Semyung Univ.) ;
  • Jung, Y.G. (School of Mechanical Engineering, Kumoh National University of Technology)
  • 김세웅 (국립금오공과대학교 기계공학부) ;
  • 황철민 (국립금오공과대학교 기계공학부 대학원) ;
  • 장태익 (세명대학교 건축설비시스템공학과) ;
  • 정영관 (국립금오공과대학교 기계공학부)
  • Published : 2007.09.15

Abstract

In order to calculate the relation between the hydrogen and the hydrogen absorption metals in the atomic level, Embedded Atom Method(EAM) is recommended. In this study, we had constructed the EAM programs from constitutive formulas and parameters of the hydrogen and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing in the geometric shape of hydrogen absorption metals, as palladium bars and plates. And the EAM analyses data were compared with the experiment data by using electrochemical method. As results, it is note that the expansion rate in thickness of the palladium plate model by EAM analyses is about 4 times larger than width and length, be similar to experiment results. Also, in the microscopic and macroscopic level the expansion behavior through EAM analyses show good agreement with experiment data.

Keywords

References

  1. NEDO技術開發機構 燃料電池 . 水素分野の技術開發ロードマップ(案 ), 2004
  2. 新エネルギー . 産業技術總合開發機構, 水素利用國際クリーンエネルギーシステム技術(WE-NET)第II期硏究開發タスク11水素貯藏材料の 開發 2003, 3
  3. 정영관, 김경훈, 이근진, 한국수소 및 신에너지학회 논문집, Vol. 12, No. 2, 2001, p. 121
  4. Ohno , Esfarjam, Kawazoe, 'Computational Materials Science', Springer, 1999
  5. '組織形成科程の計算機シュミレーション', 日本金屬學會シンぽジウム予槁, 1994
  6. '計算機,シュミレーションを用いた材料開發の基礎と応用', 日本金屬學會seminar, 1998
  7. S. M. Foiles, M. I. Baskes, Mater, Sci. Rep., Vol. 9, No. 251, 1993
  8. R. Car, M. Parrinello, Phys. Rev. Lett., Vol. 55, No. 22, 1985, p. 2471 https://doi.org/10.1103/PhysRevLett.55.2471
  9. M. S. Daw, M. I. Baskes: Phys. Rev., Lett., Vol. 50, 1983, p. 1285 https://doi.org/10.1103/PhysRevLett.50.1285
  10. M. S. Daw, M. I. Baskes, Phys. Rev., B, Vol. 29, No. 12, 1984, p. 6443 https://doi.org/10.1103/PhysRevB.29.6443
  11. 鈴木哲史 ,大久保忠恒: 材料, 8, 1997, p. 36
  12. S. M. Foiles, M. I. Baskes, C. F. Melius, M. S. Daw, J. of the Less-Commom Metals, Vol. 130, No. 465, 1987
  13. S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev., B, Vol. 33, 1986, p. 7983 https://doi.org/10.1103/PhysRevB.33.7983
  14. 長岡洋介,: '物質の量自力學',岩波書店, 1995
  15. J. H. Rose, J. R. Smith, F. Cuinea, J. Ferrante: Phys. Rev., B, Vol. 29, No. 6, 1965, p. 2963
  16. J. D. Rittner, S. M. Foiles, D. N. Seidman, Phys. Rev., B, Vol. 50, No. 16, 1994, p. 12004 https://doi.org/10.1103/PhysRevB.50.12004
  17. Press, Teukolsky, Vettering, Flannery, 'Numerical Reciples', Cambridge, 1992, p. 301
  18. 정영관, 김경훈, 김세웅, 이성희, 이근진, 박규섭, 한국정밀공학회 춘계학술대회 논문집, 2002, P. 652