Physicochemical Study of Thermal Treated Serpentine for Carbon Dioxide Sequestration

이산화탄소 포획을 위한 serpentine의 열처리와 물리화학적 특성 변화 연구

  • Published : 2007.09.15

Abstract

Silicate mineral serpentine with magnesium and calcium was selected as a mineral carbonation mediators for carbon dioxide storage. Serpentine has various metallic elements as an oxides form of magnesium, iron, calcium, aluminium etc. Magnesium and calcium could be carbonation salt preferentially than other metal component within serpentine. Systemic thermochemical treatment for serpentine could change physicochemical properties like a surface area and pore dimensions. Due to the rapid chemical reaction rate depended on dimensional values, carbonation formation could determined by surface property change of thermochemical treated serpentine.

Keywords

References

  1. Jepma C, Munasinghe M, 'Climate Change Policy', New York, NY, Cambridge University Press; 1998, p. 331
  2. Bajura R. A, 'The role of carbon dioxide sequestration in the long term energy future', Fifth International Greenhouse Gas Technologies Conference, Cairns, Australia, Collingwood, VIC, AU, CSIRO Publishing, 2001, p. 52-58
  3. R. Pierce, 'Greenhouse gas mitigation technologies, an overview of the $CO_2$ capture, storage and future activities of the IEA Greenhouse Gas R&D programme', Energy Conversion and Management, Vol. 37, 1996, p. 665 https://doi.org/10.1016/0196-8904(95)00237-5
  4. P. Freund and W. Ormerod, 'Progress toward storage of carbon dioxide Energy Conversion and Management', Vol. 38, 1997, p. S199-4 https://doi.org/10.1016/S0196-8904(96)00269-5
  5. M. Peter, 'Impacts on the marine environment from direct and indirect ocean storage of $CO_2$ Waste Management', Vol. 17, 1998, p. 323 https://doi.org/10.1016/S0956-053X(97)10043-5
  6. K. Cole, P. Freund and W. G. Ormerod, 'Predicting future variability of dissolved inorganic carbon in the ocean Fuel and Energy', Vol. 37, 1996, p. 145
  7. M. Holtz, P. Nance and R. Finley, 'Reduction of greenhouse gas emissions through $CO_2$ EOR in Texas', Environ Geosci, 2001, p. 99
  8. H. Koide and K. Yamazaki. 'Subsurface $CO_2$ disposal with enhanced gas recovery and biochemical carbon recycling', Environ Geosci, 2001, p. 24
  9. K. Lackner, D. Butt and C. Wendt, 'Progress on binding $CO_2$ in mineral substrates', Energy Convers Manage, Vol. 38, 1997, p. 259 https://doi.org/10.1016/S0196-8904(96)00279-8
  10. K. Lackner, C. Wendt, D. Butt, E. Joyce and D. Sharp, 'Carbon dioxide disposal in carbonate minerals', Energy, Vol. 20, 1995, p. 1153 https://doi.org/10.1016/0360-5442(95)00071-N
  11. 최원경, 조태환, 이재근, '탄산염광물화용 활석의 열처리에 따른 결정학적 분광학적 특성변화', 한국수소 및 신에너지학회 논문집, Vol. 17, No. 1, 2006, p.109-116
  12. 최원경, 문승현, 조태환, 이재근, 'Mineral Carbonation 원료용 수활석 전처리에 대한 연구', 한국수소 및 신에너지학회 논문집, Vol. 16, No.3, 2005, p. 277-283
  13. R. Schulze, M. Hill, R. Field, P. Papin, R. Hanrahan and D. Byler, 'Characterization of carbonated serpentine using XPS and TEM', Energy Conversion and Management, Vol. 45, 2004, p. 3169 https://doi.org/10.1016/j.enconman.2004.02.003
  14. J. Moulder, W. Stickle, P. Sobol and K. Bomben. Handbook of X-ray photoelectron spectroscopy, Eden Prairie Minnesota, Perkin, Elmer, 1992
  15. 함용물, 전해수, 김용배, '사문석의 이용에 관한 연구[I], 사문석의 화학적 방법에 의한 비교 검토', 대한화학회지, Vol. 8, 1964, pp. 5-8
  16. 황진연, '사문석의 특성과 활용', 한국광물학회지, Vol. 15, No. 2, 2002, pp. 48-54