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CYCLES THROUGH A GIVEN SET OF VERTICES IN
REGULAR MULTIPARTITE TOURNAMENTS

LUTZ VOLKMANN AND STEFAN WINZEN

ABSTRACT. A tournament is an orientation of a complete graph, and
in general a multipartite or c-partite tournament is an orientation of a
complete c-partite graph.

In a recent article, the authors proved that a regular c-partite tourna-
ment with 7 > 2 vertices in each partite set contains a cycle with exactly
7 — 1 vertices from each partite set, with exception of the case that ¢ =4
and » = 2. Here we will examine the existence of cycles with r — 2 vertices
from each partite set in regular multipartite tournaments where the r — 2
vertices are chosen arbitrarily. Let D be a regular c-partite tournament
and let X C V(D) be an arbitrary set with exactly 2 vertices of each
partite set. For all ¢ > 4 we will determine the minimal value g(c) such
that D— X is Hamiltonian for every regular multipartite tournament with
2 g(c).

1. Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The
vertex set and the arc set of a digraph D are denoted by V(D) and E(D),
respectively. If zy is an arc of a digraph D, then we write x — y and say z
dominates y, and if X and Y are two disjoint vertex sets or subdigraphs of D
such that every vertex of X dominates every vertex of Y, then we say that X
dominates Y, denoted by X — Y. Furthermore, X ~+ Y denotes the fact that
there is no arc leading from Y to X. For the number of arcs from X to ¥ we
write d(X,Y).

If D is a digraph, then the out-neighborhood N}, (z) = N*(x) of a vertex =
is the set of vertices dominated by x and the in-neighborhood N, (z) = N~ (x)
is the set of vertices dominating @. Therefore, if zy € E(D), then y is an
outer neighbor of  and z is an inner neighbor of y. The numbers df,(z) =
d*t(z) = [N*(z)| and dp(z) = d7(z) = |N~(z)| are called the outdegree
and the indegree of x, respectively. Furthermore, the numbers 5}3 =6t =
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min{d* (z)|z € V(D)} and 6, = 6~ = min{d~(z)|z € V(D)} are the minimum
outdegree and the minimum indegree, respectively.

For a vertex set X of D, we define D[X] as the subdigraph induced by X.
If we replace in a digraph D every arc zy by yz, then we call the resulting
digraph the converse of D, denoted by DL,

If we speak of a cycle, then we mean a directed cycle, and a cycle of length
n is called an n-cycle. The length of a cycle C' is denoted by L(C). A cycle in
a digraph D is Hamiltonian, if L(C) = |V(D)|. A cycle-factor of a digraph D
is a spanning subdigraph consisting of disjoint cycles.

A digraph D is strongly connected or strong, if for each pair of vertices u and
v, there is a path from u to v in D. A digraph D with at least k + 1 vertices
is k-connected if for any set A of at most k — 1 vertices, the subdigraph D — A
obtained by deleting A is strong. The connectivity, denoted by x(D), is then
defined to be the largest value of k such that D is k-connected. If (D) =1
and x is a vertex of D such that D — z is not strong, then we say that z is a
cut-vertez of D.

There are several measures of how much a digraph differs from being regular.
In [18], Yeo defines the global irregularity of a digraph D by

ig(D) = xen‘l%){ﬁ (2),d™(z)} — . emvi(nD){d+ (v),d” ()}

and the local irregularity by 4,(D) = max{|d*(z) —d~ (z)||z € V(D)}. Clearly
(D) < ig(D). If ig(D) = 0, then D is regular and if i;(D) < 1, then D is
called almost regular.

A c-partite or multipartite tournament is an orientation of a complete c-
partite graph. A fournament is a c-partite tournament with exactly ¢ vertices.
If V1, Vs, ..., V, are the partite sets of a ¢-partite tournament D and the vertex
x of D belongs to the partite set V;, then we define V(z) =V,. If D is a c-
partite tournament with the partite sets Vi, Vs, ..., V. such that [V}]| < |V5] <
-+ < |Vg|, then |V,| = a(D) is the independence number of D.

Let B = B(ry,re,73,74) be the following bipartite tournament, which will be
useful later. Let R, Rz, R3, R4 be pairwise disjoint independent sets of vertices
with |R;| = r; for 1 < ¢ < 4. Define V(B) = R; U Ry U R3 U Ry such that
R, - Riy1 fori=1,2,3 and Ry — R;.

There is an extensive literature on cycles in multipartite tournaments, see
e.g., Bang-Jensen and Gutin [1], Guo [2], Gutin [3], Volkmann [11], Winzen
[15] and Yeo [17]. A new approach on cycles was presented by the authors in
[12]:

Problem 1.1 (Volkmann, Winzen [12]). Which conditions have to be fulfilled
in order that a c-partite tournament with the partite sets V1, Vo, ..., V, contains
a cycle with exactly r; vertices of V; for all 1 < ¢ < ¢ and given integers
0<r <|V?
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The most interesting part of Problem 1.1 is the case that r, = r; for all
1 <45 <e Inl1997, A. Yeo [16] gave a solution of this problem for regular
c-partite tournaments in the case that r; = |V;| forall 1 < i < c.

Theorem 1.2 (Yeo [16]). Every regular multipartite tournament D is Hamil-
tonian.

Since, according to the well known result of Moon [5] that every strongly
connected tournament is vertex-pancyclic, a strongly connected tournament is
Hamiltonian, we note that the next theorem also treats Problem 1.1 (especially
in the case that r; =1 for all 4).

Theorem 1.3 (Volkmann, Winzen {14]). Let D be an almost regular c-partite
tournament with ¢ > 5. Then D contains a strongly connected subtournament
of order p for every p € {3,4,...,c}.

In a recent article, Volkmann and Winzen [12] solved Problem 1.1 in the
casethat m; =r—1foralll <i<ec

Theorem 1.4 (Volkmann, Winzen [12]). Let V4, Va,...,V, be the partite sets
of a regular c-partite tournament D with |V1| = [Va] = - = V.| =r > 2.
Ifc>50rc=4andr >4 orc=3orc=2 and D is not isomorphic to
B(%,%,5,%), then D contains a cycle with ezactly r — 1 vertices from each
partite set.

For the case that ¢ = 4 and r = 2, Theorem 1.4 is not true in general as the

following example (see also [10, 11]) demonstrates.

Example 1.5. Let V; = {v},v]} for ¢ = 1,2,3,4 be the partite sets of a
4-partite tournament such that v{ — v) — vy — v, v/ - v§ — vf — oy,
{v1,v5, v3} — vy = {o7, 05,05} — vf — {5,053},
o vl = o vl 0
(see also Figure 1). Now it is a simple matter to check that the resulting 4-
partite tournament is 3-regular without a cycle containing exactly r — 1 = 1
vertices of every partite set.

The complexity of the proof of Theorem 1.4 shows that the effort of an
analysis of Problem 1.1 for the case r; = r — 2 for all ¢ would exceed the value
of the result. Thus, in this paper we examine Problem 1.1 from another point
of view. First, let us give a reformulation of Problem 1.1.

Problem 1.6. Let D be a c-partite tournament with the partite sets Vi, V4,
..., Vz. Which conditions have to be fulfilled in order that for given integers
0 < s; < |V;| thereis aset X C V(D) with the property (XNV;[=s; (1 <i<¢)
such that the multipartite tournament D — X is Hamiltonian?

If we replace the condition that there exists a set X with the properties

mentioned above by the condition that for every choice of s; vertices of V;
D — X is Hamiltonian, then we arrive at the following new problem.
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Figure 1: A regular 4-partite tournament without a strong
subtournament of order 4

Problem 1.7. Let D be a c-partite tournament with the partite sets V3, Vs,
..., V.. Which conditions have to be fulfilled in order that for given integers
s; < |Vi| and for every choice of the set X C V(D) with |[X NV;| = s;

<
<4 € ¢) the multipartite tournament D — X is Hamiltonian?

0
(1

In this article, we investigate the special case that D is regular and that
si=s;for1<4,5<e¢

Problem 1.8. Let D be a regular c-partite tournament with ¢ > 4 and exactly
r vertices in each partite set. Furthermore let X C V(D) be an arbitrary set
with exactly k < r vertices of each partite set. For all given integers £ > 1 and
¢ > 4 find the minimal value g(k, ¢) such that D — X is Hamiltonian for every
regular multipartite tournament with r > g(k, c).

The condition ¢ > 4 is important as we can see in the following two examples.

Example 1.9. Let D be the regular bipartite tournament B (%, 515, %) with
r > 2 even. If X contains exactly k vertices of Ry and k vertices of Ry (if

k < 5) or if X contains all vertices of Ry and Rz and k — 3 vertices of B3 and

R4 (if k > %), then obviously D — X is not Hamiltonian.

Example 1.10. Let £ and r be positive integers such that & < r. Then we
define the 3-partite tournament D with the partite sets V3 = {u3, U, ..., us},
Vo = {v1,v2,...,0.} and V3 = {wi,wa,...,wr} by Y = {u1,us, ..., ur_x} —

Q2 - {v15v23'-"v7’—k} - Z = {w15w2""7w7‘—k—1} - Y7 Y - {w’l‘—k7
Wr—k41y -+ wr—l} - QQ — Wy — Y7 QQ —U = {UT—k+17 Up—k+4+2y - aur} -
(Z ) {wr—k}) -V = {Ur—k+1avr-k+27 ce ,’UT} - W= {wr—k+1,wr—k+21 ceey

wr} — U — V =Y. It is easy to see that D is a regular 3-partite tournament
such that D — (U UV U W) is not Hamiltonian.
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In [12], the authors showed that g(1,4) = 3 and g(1,¢) =4, if ¢ > 4 is odd
and g(1,¢) < 3, if ¢ > 4 is even. In this paper, we will determine g(2, c) for all
c> 4.

2. Preliminary results

To decide whether a multipartite tournament is Hamiltonian or not, the
connectivity of this digraph is important as we can see in the following result
of Yeo [16].

Theorem 2.1 (Yeo [16]). Let D be a (|¢/2]| + 1)-connected c-partite tourna-
ment such that a(D) < q. If D has a cycle-factor, then D is Hamiltonian.

He also gave a sharp bound for the connectivity of a multipartite tournament.
Theorem 2.2 (Yeo [17]). Let D be a c-partite tournament. Then
D)| - —24(D
w(D) > [IV( )| — a(D) — 2i( )1 _

3

Nevertheless, in some cases Yeo’s bound can be improved, as the next the-
orem for example demonstrates.

Theorem 2.3 (Volkmann, Winzen [13]). Let S be a separating set of a multi-
partite tournament D with k(D) = IV(D)I'QzQ(D)_O‘@ and |S| = k(D). Then
there is no partite set V; of D such that V, N (V(D) = S) # 0 and V;N S # 0.

A characterization whether a digraph D has a cycle-factor or not was given
by Ore {6].

Theorem 2.4 (Ore [6]). A digraph D has a cycle-factor if and only if [IN(S))
> |S| for each subset S C V(D).

In 1999, Yeo [18] (see also Gutin and Yeo [4]) rewrote Theorem 2.4 in the
following useful form.

Theorem 2.5 (Yeo [18], Gutin, Yeo [4]). A digraph D has no cycle-factor if
and only if V(D) can be partitioned into subsets Y, Z, Ry, Ry such that

(1) Ry ~Y, (RiUY) ~ Ry, Y is an independent set
and |Y| > |Z|.

This result leads to conditions for the global irregularity of a multipartite
tournament D without a cycle-factor.

Theorem 2.6 (Stella, Volkmann, Winzen [7]). Let V1, Va,..., V. be the partite
sets of the semicomplete multipartite digraph D such that V1] < |[Va| < --- <
|V.|. Assume that D has no cycle-factor. According to Theorem 2.5, V(D) can
be partitioned into subsets Y, Z, Ry, Ry salisfying (1) such that |Z|+1 <|Y| <
V.| — t with an integer t > 0. Let V; be the partite set with the property that
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YOV, LetQ=V(D)-Z-V;,, Q1 =QNR, Q2=QNRy, Y1 =R NV,
and Yo = RoNV;. Then

VD) = Vot | = 21Vl + 3+ [Vl

- 2 )

ig(D)

'Lf Ql = ®7
s VD) = [Veor| — 2{Vel + 3 + ]

ZQ(D) 2 i

if Q2 =0, and
o VD) = [Ver| —2[Vel +3 +1
> 5 ,

ig(D) = u(D)

if Q1 #0 and Q2 # 0.
An analysis of the proof of the last theorem yields the following.

Corollary 2.7 (Stella, Volkmann, Winzen [7]). Let Vi, Va,..., V. be the partite
sets of the multipartite tournament D such that V1| < |Va| < --- < |V,|. As-
sume that D does not contain a cycle-factor. Let Y, Z,R1, R2,Q,Q1,Q2,V;, Y1
and Ys be defined as in Theorem 2.6.
If @1 =0 and iy(D) = 'wD)'_'%‘1‘2‘2'%””“’2’, then the following holds.
i) min{d~(w)lw € V;} =|Z| =1|Y| - 1.
i) Y| = |Vi| — |Yz2|, which means that |Y1| =0 and |V; N Z| = 0.
iil) ¥ — Qy — (Y2 U 2).
iv) d7(g2) = d¥(g2) — |Y2| + 1 for all g2 € Q2.
v) max{d*(w),d” (w)lw € V(D) - V;} = d~(q) for a vertex q € Q2 such
that [V ()| = Va1,
vi) ig(D) = max{d~(g)lg € Q2} — min{d~ (w)|w € V;}.
vil) Vil = Vi
viii) |V(D)| = [Veei| = 2|Ve| + 3 + |Y2] is even.
Let j =c—1,ift=candj=c fi<c IfQ1 # 0 and Qs # 0 and
ig(D) = |V(D)'—'VC’;|*2IVC[+3H, then we conclude that
a) ’Lg(D) = ’LL(D)
b) {IVil, [V;1} = {IVel, [Ve—al}-
) Vinz=0,1Z|=Y|-1,|Y|=V| -t
d) (Vi N@Q1|=1ViNQ1] and [V, NQ| = IViNQ| for all 1 <I,m < ¢ such
that Vi, NQ # 0 and VN Q # 0.
&) V; CQ.
) d(?éﬁ?z) _ IV(D)I—IV~21J—2IVCJ+1+t — [Ya| + 1]
d(ﬁ?é,cl?z) _ IV(D)I—IVc—éI—ZJVcIHH + |Ya| — V3.

g) d¥(q1) = d™(q1) +ig(D) for all ¢ € Q1 and d~(ga) = d¥(g2) + 1y(D)
for all g2 € Q5.

h) Q2 - (ZUYQ), (ZUYl) s Ql.

§) V(D) — |Ve=1| — 2|V,| + 3 + ¢ is even.

and
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If the global irregularity differs slightly from the lower bound of Theorem
2.6, then some results of Corollary 2.7 are still valid. The proof of the next
corollary is omitted here. It is a simple consequence of the proof of Theorem
2.6, which can be found in [7].

Corollary 2.8. Let V1, Va,..., V. be the partite sets of the multipartite tour-
nament D such that V1| < [Va| < -+ <|V|. Assume that D does not contain
a cycle-factor. Let Y, Z,Q), Q1 and Q2 be defined as in Theorem 2.6.

IfQ1 # 0 and Q2 # 0 and iy(D) < IV(D)|_|VC“;|_2|VC|+4H, then we conclude
that ig(D) = 4;(D) and |Y| = |Z] + 1.

The next result is a well-known theorem of Turéan (8] (see also [9], p. 212)
and is a good help to give an estimation for the number of arcs in a digraph.

Theorem 2.9 (Turdn [8]). Let D be o digraph without 2-cycles. If the under-
lying graph of D has no clique of order p+ 1, then

p—1 2
|E(D)| < WIV(D)I -

The following remark concerning regular multipartite tournaments is well-
known but important for this article.

Remark 2.10. Let V1, Va,...,V, be the partite sets of a regular c-partite tour-
nament. Then it follows that r = |V1| = |Va| =--- = |V,| and
(c—Dr

2

for all z € V(D). That means especially that r is even, if ¢ is even.

a* (x)’ d” ('77) =

3. Main results

The following theorem of Volkmann and Winzen [12] presents a first estima-
tion for the value of g(k,c) of Problem 1.8.

Theorem 3.1 (Volkmann, Winzen [12]). Let V1, Va,..., V. be the partite sets
of a regular c-partite tournament D with ¢ > 4 and |[Vi| = |Wa| = =|V.| =
r > 2. Furthermore, let X be an arbitrary subset of V(D) consisting of exactly
k vertices of each partite set for 1 <k <r—1. If

%k(c—1) 2 4k —2
c—3 c—3 |’

then D contains a cycle C such that V(C) =V (D) — X.

r>

Jorese]

Hence, we have g(k,c¢} < 3k + [ic’—"_—_sz-‘ and because of ¢ > 4 it follows

that g(k,c) < 7k — 2 and especially g(2,¢) < 12. The following example
demonstrates that g(2,¢) > 5 for each ¢ > 4.
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Example 3.2. Let V/,V;, ..., V] with |V/| = 2 for all 1 <i < ¢ be the partite
sets of a multipartite tournament D' such that V/ — V/,if 1 <i < j<ec
Then let the c-partite tournament D consist of D', a copy D" of D’ (with the
partite sets V{', V3',..., V") such that V" — V/ and V] — V" forall 1 <i <
J < ¢ (see Figure 2 for ¢ = 4). Then we observe that D is a regular c-partite
tournament with exactly 4 vertices in each partite set such that D — V(D') is
not Hamiltonian.

D/

=i
/ /

Y

X I\

D/I /\
/ \ \
I\

Figure 2: A regular 4-partite tournament D with the property
that D — V(D’) is not Hamiltonian

With a little change of the last example, we'can prove that g(1,¢) = 3, if
¢ > 4is even.

Remark 3.3. If we remove one vertex from each set V/ and V" for all 1 < < ¢,
then the resulting c-partite tournament D, is regular such that D’ without the
¢ vertices of the sets V; (1 < ¢ < ¢) is not Hamiltonian. Since, according to
the results in [12], g(1,¢) < 3, if ¢ > 4 is even it follows that g(1,¢) = 3 in this
case.

The next example shows that ¢g(2,4) > 9.

Example 3.4. Let Vi = {u1,us,...,us}, Vo = {v1,v2,...,v8}, Va = {ws, we,
.., wg} and V3 = {a1,as,...,as} be the partite sets of a multipartite tour-
nament D such that Ry = {u1,ug2,u3,v1,v2,v3} — Y = {a1,a2,...,a6} —
R2 = {U4,u5,u6,v4,v5,v6,w6} ~ 4 = {wl,wQ,...,wg,} — Rl, Y — Z,
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Ry ~ Ry, v3 — uy — {v1,v2}, v1 — ug — {v2,vs}, {va,v3} — us — vy, va —
ug — {vs,vs}, {vg,v5} — us — ve, {vs,06} — ug — v, we — (R1 — {we}),
({ws} U Z) ~ X = {ur, ug, vr, vg, wr, ws, ar,a8} ~» Y, vy — ur ~» (Ry —{v1}),
vz — ug ~ (R1 — {v2}), us — vz ~ (R1 — {us}), (Ra — {va}) ~ ur — vy,
(Rg — {vs}) ~ ug — vs, (R2 — {ua}) ~ v7 — ug, Ry ~» {vs, wr,ws,ar,as} ~
Ry, {a7,a8} — {ur,us,v7,v8} — {wr,ws}, {ar,as} — {wr,ws} and w7 —
vy — ug — vg — uy. Then we observe that D is regular, and D — X consists
of the sets Y, Z, R; and R satisfying (1). According to Theorem 2.5 it follows
that D — X is not Hamiltonian.

To give a complete analysis of the case ¢ = 4, we will also give an example
for a regular 4-partite tournament D with 6 vertices in each partite set such
that there is a subset X C V(D) with exactly 2 vertices from each partite
set and with the property that D — X is not Hamiltonian. (Remember that,
according to Remark 2.10, the cardinality of each partite set has to be even.)

Example 3.5. Let Vi = {uq,us,...,us}, Vo = {v1,v2,...,06}, V3 = {wy, wa,
..., we} and Vy = {a1,a2,...,as} be the partite sets of a multipartite tour-
nament D such that R1 = {u1,ug,v1,v2} — Y = {a1,062,03,a4} — Ry =
{U3,’LL4,'U3,’U4,’U)4} ~ Z = {’LU1,’UJ2,w3} - R17 Rl ~ RQ, Y — Z7 Uy — v —
Ug — Vg — UL, U — U3 — Ug — Vg — U3, Wq — (Ry — {ws}), u1 — vs — us,
{U4,w4} — Us — U2, U2 — Vg — U4, {U37w4} - Ug — U1, V1 — Us — U3,
{va,wa} — us — va, v2 = ug — va, {v3,ws} — ug — v1, a1 — uz — wi,
(Z—{w1}) = us — (Y ~{a1}), az — ug — wa, (Z—{w2}) = us — (Y —{az}),
a3 — ws = (Y —{as}), as — ws — (Y — {aa}), Rz ~ {ws,we} — Ry,
Z — a5 — wy, ((Z —{ws})U{ws}) — ag — ws, (R2 — {ws}) — {as,a6} — R,
{as,a6} — {USaUG} - {ws,we} — {us,v6} — {as, a6} — {‘ws,ws} and
Us — Vs — Ug — Vg — Us. Let X = {us,uﬁ,v5,ve,w5,w6,a5,a6}. Then
we observe that D is regular, and D — X consists of the sets Y, Z, Ry and Rs
satisfying (1). According to Theorem 2.5 it follows that D — X is not Hamil-
tonian.

In the case of a regular 5-partite tournament D with exactly 8 vertices in
each partite set, there is no guarantee that D contains a cycle through any set
of 6 vertices from each partite set.

Example 3.6. Let Vi = {u1,ua,...,us}, Vo = {v1,v2,...,vs8}, Va = {w1, wa,
..., ws}, Va={a1,a9,...,a8} and V5 = {b1,ba,...,bs} be the partite sets of a
multipartite tournament D such that Ry = {u1, ug, us, v1, v2, v3, w1, ws, w3} —
Y = {bl,bQ,...,bﬁ} -— R2 = {U4,u5,u6,v4,v5,v6,w4,w5,we,a6} ~ 7 =
{al,ag,...,a5} hd Rl, Rl ~ RQ, Y — Z, {ul,uz,ug} 4 {Ul,'UQ,U;g} —
{wi,we, w3} — {ur,u2,us}, {us,us,u6} — {va,vs,v6} — {wa, ws,we} —
{ua,us,ue}, as — (B2 — {ae}) ~ X = (V(D) — (Y UZ U R:1 URy)) ~ Ry,
b1 — ur — a1, (Z —{a:}) U {as}) = ur — (Y — {b1}), ba — ug — aaq,
((Z —{a2}) U{as}) — us — (Y — {b2}), b3 — v7 — a3, ((Z — {as}) U {as}) —
vy = (Y = {ba}), bs — vz — a4, (Z — {aa}) U {ae}) — vs — (Y — {bs}),
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bs = a7 — (Y — {bs}), b — as = YV — {be}, ((Z — {as}) U {ae}) — b7 — as,
Z — bg — ag, (ZU {ae}) — {w7,w8} — Y, {a7,a8} — {b7,b8} — (X —
{az,as8,b7,b8}) — {ar,as}, {ur,us} — {vr,vs} — {wr,ws} — {ur,us}. Then
we observe that D is regular, and D — X consists of the sets Y, Z, R; and Rs
satisfying (1). According to Theorem 2.5 it follows that D — X is not Hamil-
tonian.

The following example deals with the case of a c-partite tournament D with
¢ > 6 and exactly 6 vertices in each partite set.

Example 3.7. Let V; = {v; 1,0, 2,...,vi6} for 1 <i < c¢be the partite sets of a
c-partite tournament D with ¢ > 6 such that By = {v;; |1 <i<¢—-2,1<5<
2} —-Y = {’l}cy],’l}c,g,’l)c73,’1}c’4} — RQ = {Ui,j | 1 < 7 <c-— 2, 3 < ] < 4V (Z =
c=1 AN j=4)}~ Z = {vee1,1,Vc-1,2:Ve—13} = R , Ry ~ Ry, Y — Z
and ve—14 — (R2 — {ve—1,4}). The vertices in Ry as well as the vertices in
Ry —{vc_1,4} let be connected such that D[R;] (D[R — {vc—1,4}], respectively)
is (¢ — 3)-regular. Moreover, let X = (V(D)—- (Y UZUR; UR3)) ~ Ry except
the arcs {vi1 — Vit1,5,0i,2 — Vit1,6:Ve—2,1 — V1,5,Vc—22 — V1,6 | 1 <1 <
¢ — 3}. Analogously, let (R2 — {ve-1,4}) ~» X except the arcs {viy15 —
V3,3, Viy1,6 — Via, V1,5 — Ve—23,V1,6 — Ve—2,4 | 1 < i < ¢— 3}. Furthermore
let Vo —» X' ={vi; |1 <i<[52]) AB5<i<6)V = A =
5 A c iseven)} — Vo1 — (X — (X' U {vc-1,5,Vc-1,6,Ve,5,Vc6}) — Vo,
(YU {ves,ve6}) = {Ve1,5,Ve-1,6} and {ves,ve6} — (Z U {ve—1,4}). If finally
the vertices of X — {vc_15,%c—1,6,Vc,5, Ve,6} are connected in a regular way,
then we observe that D is regular, but D — X consists of the sets Y, Z, R;
and R satisfying (1). According to Theorem 2.5 it follows that D — X is not
Hamiltonian.

Example 3.7 shows that ¢g(2,¢) > 7, if ¢ > 6. If ¢ > 8, then this estimation is
sharp as we will see in the main result of this paper. But for ¢ = 7 this bound
is not sharp.

Example 3.8. Let V; = {v;1,v;2,...,v;,7} for 1 < i <7 be the partite sets of
a T-partite tournament D such that V(D) can be partitioned in the sets Ry =
{’Ui’j I (1 <i<HAN1LC5L 2) \Y (Z S {2,4,5} NG = 3)}, Y = V7—{’U7’6,’U7’7},
Ro={v; |1 <i<5A4<j<B)VEe{l,L3}Aj=3)V (i=6Aj=05)},
Z = {ve1,v6,2,V6,3,V64} and X = {v;; | 1 <1 < 7,6 <j <7T}. Furthermore
let us define R1 ;=R NV, Ryy=RaNViand Xy =XNVforalll <i<7.
IR -Y—>Ry~Z—> R ~Ry,)Y >Z,Rin > Ris— Ri3— Riaq—
Ris — Ry — Ri3— Ris— Ri2— Bia— Ry, Rog — Ras — Raz —
Rp4 — Rys — Ray — Rag — Ros — Roo — Rou — Ray, Rosz — ves —
Ry— (R 3URsg), Ry ~ X, X ~ Ry except the arcs {vi1 — v36,v1,2 = 37},
(X— (Xl UXGUX7)) —-Y - Xy —»Z— (X— (Xl UXGUX7)), Y — Xe,
X7 — Z, XG — (X—(Xl UXGUX7)) g X7 — X1 — X6, X7 — Xﬁ and
Xi =2 Xo =2 X35> Xy - X500 X1 -0 X3 - X5 — Xo - Xy — Xy,
then we observe that D is regular, and D — X consists of the sets Y, Z, Ry
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and Ry satisfying (1). According to Theorem 2.5 it follows that D — X is not
Hamiltonian.

The next theorem, the main result of this paper, determines g(2,c) for all
c> 4.

Theorem 3.9. Let V1, Vs, ..., V. be the partite sets of a reqular c-partite tour-
nament D such that [Vi| = |Va] = --- = |V.| = r. If g(k,c) is defined as in
Problem 1.8, then it follows that

9(2,4) =g(2,5) =9, ¢(2,6)=7, 9(2,7)=8 and g(2,¢)=T7 if c>8.

Proof. Let D be aregular c-partite tournament with the partite sets V3, Vs, . . .,
Ve each of the cardinality r. To prove this theorem we distinguish different
cases.

Case 1. Let ¢ = 4. Theorem 3.1 yields g(2,4) < 12 and Example 3.4 implies
9(2,4) > 9. According to Remark 2.10 there is no regular 4-partite tournament
with exactly 11 or exactly 9 vertices in each partite set. Hence, it remains to
consider the case r = 10.

If X C V(D) is an arbitrary set with exactly two vertices from each partite
set of D, then for the multipartite tournament D’ := D — X it follows that
w(D') < 6. Let V[, Vy,..., V! be the partite sets of D'. It follows that |V}/| = 8
for all 1 <4 < ¢. Theorem 2.2 implies that

(D) > []V(D’)[ —a(f’)—%z(D’)] . [32—2—121 .

Suppose that x(D’) = 4. Then Theorem 2.3 with |S| = 4 yields that there is
at least one partite set V; of D’ such that V; C S, a contradiction. Hence,
we have k(D') > 5 = L%D/)J -+ 1. Applying Theorem 2.1 we see that D’ is
Hamiltonian, if it contains a cycle-factor. Hence, it remains to consider the
case that D’ has no cycle-factor. Then V(D') can be partitioned into subsets
Y,Z, R and R satisfying (1). Furthermore let Qq,Q2,Y:,Y2,V/ and ¢ be
defined as in Theorem 2.6.

If Q1 = 0, then because of |V}/| + |Z| < 15 it follows that d*(y) > |Qa| >
V(D) = |V/| —|Z] > 32— 15 = 17 for every y € Y, a contradiction to
dt(y) = S =15,

Analogously the case 2 = @} is impossible.

Finally, let @1 # 0 and Q2 # 0. Since D is regular together with Theorem
2.6 we arrive at

7 ! 4
6o i (0 s WP IV~ 2V 3t 114t
2 2
and thus i,(D’) =6 and t < 1.
First let ¢ = 1. Then Corollary 2.7 ¢) yields |Y| = 7 = |Z| + 1. Let
y € V/ =Y # . Since, according to Corollary 2.7 ¢), V/ N Z =, it follows
that y € (Y1 UY2). If y € Y3, then Corollary 2.7 k) implies y — @Q; and thus



694 LUTZ VOLKMANN AND STEFAN WINZEN

y — Q, because of |Q| = |V(D')| — Y] — |Z] — 1 = 18 a contradiction to the
regularity of D. If y € Y3, then analogously we arrive at a contradiction.

Second, let ¢ = 0. Then Corollary 2.8 implies that 8 = |Y| = |Z| + 1 and
ig(D’) = 4;(D'). Without loss of generality, we may suppose that Y = VJ. It
follows that |Q| = |Q1|+|Q2| = 17 and Y; = Y3 = (. Without loss of generality,
let |Q1] < |Q2]- If Q1 is bipartite, then for every vertex q; € @, we observe
that

dB’[Ql](ql) >dp(q) =12 29-7=2.

Combining this together with Theorem 2.9, we arrive at

A< Y dpgyla) < 7IQuP° = (@i 8,
e

and thus || = 8 and |@2] = 9. To avoid a contradiction, we may suppose
that Z — @1 and thus, without loss of generality, Z C VJ. Now, for a vertex
g2 € (Q2NV3) # 0 we have the contradiction d~(g2) > |@Q1| + |Y| = 16. In
the remaining case that Q; is 3-partite we deduce that for every vertex z € Z
there is a vertex ¢1 € @y such that ¢; € V(2). Since d,, (1) > 9 and |[Z| =7 a
combination with Theorem 2.9 yields

742|Qs] < Z dpigy(@) < %|Q1|2,
neEQ
a contradiction to |@1] < |@2| and thus |@,]| < 8.

Case 2. Let ¢ = 5. Theorem 3.1 implies that g(2,5) < 9 and Example 3.6
leads to g(2,5) > 9, and thus the desired result g(2,5) = 9.

Case 3. Let ¢ = 6. According to Theorem 3.1, we have ¢g(2,6) < 8. Since
Remark 2.10 yields that r = 8 is impossible and thus we even have g(2,6) < 7.
Now because of Example 3.7 it follows that ¢(2,6) = 7.

Case 4. Let ¢ = 7. Theorem 3.1 implies g(2,7) < 8 and according to
Example 3.8 we have g(2,7) > 8. Hence, we conclude that g(2,7) = 8.

Case 5. Let ¢ = 8. With Theorem 3.1 we conclude that g(2,8) < 8 and
Remark 2.10 implies that r = 8 is impossible such that ¢(2,8) < 7. Finally
Example 3.7 demonstrates that g(2,8) = 7.

Case 6. Let ¢ > 9. With a combination of Theorem 3.1 and Example 3.7
it follows that g(2,¢) = 7 in this case.

This completes the proof of the theorem. O
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