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THE VARIATIONAL THEORY OF A CIRCULAR ARCH
WITH TORSIONAL SPRINGS AT BOTH EDGES

JAEGWI GO

ABSTRACT. Arches are constrained with rotational resistance at both
edges. An energy method is used to derive variational formulation which
is used to prove the existence of equilibrium states of elastic circular arches
for the torsional spring constants p_ > 0, py >0, and p_ + p4 > 0. The
boundary conditions are searched using the existence of minimum poten-
tial energy.

1. Introduction

Arches we consider are inextensible elastic circular subject to the action of
normal pressure. The behavior of arches are nonlinear and sensitive to the
buckling conditions, flexural rigidity, and opening angle. Classical authors,
Dadeppo [2], Dickey and Broughton [3], and Tadjbakhsh and Odeh [6] have
explored the energy principle of an elastic circular model with Drichlet and
Neumann boundary conditions.

The arches are restrained by torsional spring at the bases (see Fig. 1).
The resistance energy to conserve un-deformed arch at the both edges is taken
into account for potential energy, which yields Robin boundary conditions.
We address the existence of equilibria of the elastic circular arches and Robin
boundary conditions are found using the result of the existence of minimization
of energy. The variational formulation is set up using the energy method based
on Hamilton’s principal in section 2. This principal leads to a minimization
of total energy. In section 3 the existence of solution, namely the existence
of minimum of potential energy, is discussed using the variational formulation
and boundary conditions are searched.
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Fig. 1. Normal load uniformly distributed around arch

2. Variational formulation

Let z(s) and y(s) denote the coordinates of the point s on the cross section,
and g(s) the angle between the tangent to the cross section and z-axis, where
s is arc-length along the cross section of a buckled arch. Then

(1a) z(s) = /s cos g(s)ds,

—a

(1b) vo) = | " sing(s)ds,

—a

and, for a fixed angle a,
(2) g9:l-a,a] — R,

satisfying the constant base positions

(3a) /a sing(s)ds =0,

—a

(3b) / cos g(s)ds = 2sina.

—a

For spring constants p+ > 0, p— > 0, and pressure p € R, the strain energy
F is defined by

(4) E= ’ (1 — gs(s))?ds,

—-a
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and work done W by

W=—p [/a(zys—yws)ds—Qa]
i .
? ——p [ [ (@sing(s) = yeosg(s)ds - 2a] ,

respectively. The work done is considered as the difference in area enclosed by
the arch in its deformed and un-deformed states. The potential energy V then
is

V(g) = rp-(9(=a) +a)’ + p1(g(a) — @)’

+ /“ [(1 - gs(s))? +p/s sin(g(s) — g(g))dg] ds.

—a —a

(6)

The first and second terms in equation (6) imply the energy to keep un-
deformed arch at the both edges. If the arch is buckled with clamped bases,
then boundary conditions are g{—a) = —a and g{a) = a, which yield first two
terms in equation (6) vanish. Moreover, p_ = p; = 0 mean the buckling in
hinged bases.

The transform z(s) = g(s) — s yields

(7a) /a sin(z(s) + s)ds = 0,
(7b) /a cos(z(s) + s)ds = 2sina,
and

V(2) = p-z(=0a)’ + p+2(a)®

®) f [%)2 +p [ sinl(ale) — (€)) + (5 — €] s

—a —a
3. Existence of solution

Assume that 0 < p_, 0 < py, and py + p— > 0. Let us fix pressure p and
angle a. We want to minimize the F

E(2) = p-z(—a)® + py2(a)
©) +/_ [Zs(é‘)2 +p/_ sin[(2(s) — 2(§) + (s — §)]d¢ | ds
subject to the constraints

(10a) /a sin(z(s) + s)ds = 0,

—a

(10b) /a cos(z(s) + s)ds = 2sina.

—a
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Let H = W12 and define

(11)

(12)

fi(u) = /u cos(u(s) + s)ds,

—a

fa(u) = /a sin(u(s) + s)ds,

—a

for u € H. Define j and ¥ by

(13)

(14)

s = [ [ sinlto(e) — o€ + (s - s,

a

U(u,v) = p_u(—a)® + pru(a)? +/ u?ds + pj(v),

—a

for u,v € H, and note

(15)

E(u) = ¥(u,u).

Lemma 3.1. There exists a constant ¢ such that

(16)

Hulloo < clul,2

for every u € H.

Proof. Since u(zo) = u(s) — f:o u' for any zo € [—a,a], |u(zo)| < |uls)| +
ffa {w’|. The integration and Hoélder inequality yield

2alu(zo)|

IA

[ iz [

V2a||u| g2 + (2a) % ||| 2
vV 8a3 + 2a|ul1,2.

IA A

The last inequality is from the fact |31 A + B2 B| < /B3 + B3V A2 + B2 ]

Lemma 3.2. The set S = {u € H|f1(u) = 2sina, fa(u) = 0} is nonempty and
weakly closed in H.

Proof. The set is not empty since it contains u(s) = —2s. Let u,, be a sequence
in S such that u, — u in H. Then, by the imbedding theorem, u,, converges
to w in LZ-norm. On the other hand,

[fi(un) = fr(u)| =

(17)

/a [cos(un(8) + 8) — cos{u(s) + s)]ds

-—a

< 2/_“ Isin—;-(un(s) —u(s))sin%(un(s)+u(8)+28)ld$

a
/ |ttr, — ulds
—-a

< cllun —uflz2 — 0,

N
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where c is a constant. Thus fi(u) = [* cos(u(s) + s)ds = 2sina. Similarly,
the proof of fo(u) = [*_ sin(u(s) + s)ds = 0 can be completed. Hence S is
weakly closed. ]

Lemma 3.3. The function ¥(-,") is a semi-convex function on H x H.

Proof. Pickvin H and ¢ € R. Let us take uy and ug in Sc», = {u € H|¥(u, v) <
c}. For t € [0, 1], define

(18) 9(t) = Y(tug + (1 — t)ug,v) — t¥(ug,v) — (1 — t) ¥ (ug,v).

Then ¢(t) is a parabola with g(0) = g(1) = 0, and the second derivative with
respect to ¢ is

g"(t) = 20— (ur(=a) — u2(~0))* + 204 (w1(a) — u2(a))?

(19) + Z/a [(u) —ub)]? > 0.

-a

Thus g(¢t) <0for 0 <t <1 and
(20) U(tuy + (1 = thug,v) < t¥(u1,v) + (1 — )V (uz,v) < c.

Therefore, tu; 4 (1 — t)uz € S; ,, which implies Se,v Is convex. O

Let v, be a sequence that converges weakly to v in H. Then we can prove
U (u,vn) — ¥(u,v) uniformly similarly to Lemma 3.2.

Now, for any sequence u, that converges to v in H and ¢ as in Lemma 3.1
we have

¥ (un, v) — ¥(u,v)|
< P |lun + ool |un = ulloo + ptlfun + ulloo|lun ~ ullo
(21) ! I ! !
+ [l + wl| 2] |y, — ]2
< (p=C + pc® + Dfug + ul1 2ftn — u) 2.
Hence ¥ is semi-convex on H x H.
Lemma 3.4. The E(u) — oo as |ul1,2 — oo on H.

Proof. Note that

a

(22) E(w) > p_u¥(~a) + pyul(a) + / u' — 2lpla?.

—a

If [* w? — oo then E(u) — oo clearly. If on the other hand J¢, u? remain
bounded then E(u) — oo, because |u(+a)| — oo by the following argument;
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using u(s) a)+ f_
/_ﬁ
[ocosamcanf [ [ [ ]

2au%(—a) + 4v2a3|u(—a)]| [/_a |u’12] + 4a? /_a lu'|2.

IN

IA

O

Lemma 3.5. The E: H > R* and f; : H —» R', i = 1,2, are C* on H.
Moreover,

E'(u)h = 2p_u(—a)h(—a) + 2p1u(a)h(a) + /a 2u'h’
(23) a S e
4 [ [ cosfuls) = ul©) + (s = OI(h) ~ h(E)),

(24) Flwh = /_ " _ sin(u + s)h(s),

(25) i) = / " cos(u+ s)h(s),
for allu,h € H.

Proof. Using the Lemma 3.1,
|p—(u(—a) + h(=a))* + p+ (u(a) + h(a))?

+ [ C 4R~ fpou(-a + pru(@ + [ "7
— [2p-u(—a)h(—a) + 2p;u(a)h(a) + 2 /_a u'R]|

< p_|h(=a)® + (@) + / W

< i [Plo- +p4) +1]
Moreover, for some constant cy,

|/_a /_ sinf(u(s) + h(s)) — (u(€) + h(E)) + (s — &)
sin[u(s) — u(é) + (s — &)]

cos[u )+ (s = OI(h(s) — h(§))|

L
i
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< / | cos(h(s) — h(€)) — 1] + / / [sin(h(s) — h(€)) — (h(s) — ()]
[ [ e - ey

Cllhﬁ),z-

IA

IA

Thus, using (23),
|E(u+ h) — B(u) — E'(w)h| < calhf3 5,
where ¢; is a constant. Hence E(u) is differentiable in H and the derivative is

given by (23).
To show that E is C!, pick u, u1, and h in H and note

’ JC

1 1
a 2 a 2
s[/ iua—u'P] [/ |h'|2]

<ui — ul1,2|hl1,2,

and

[ teostints) —ur(9) + (5~ &)
— cosfu(s) — u(8) + (s — )]} (A(s) = h(©))]
= 2/_ / 'S“‘%K“l“) — u(s)) — (u(€) — w(©))]|](Als) — h()]

< eslug

where c3 is a constant. Hence, using the Lemma 3.1, for some constants k1, ka,

and k3,

|E'(u1)h — E'(u)h|
< p-lui(—a) — u(=a)||h(=a)| + p+|ui(a) — u(a)l|h(a)| + ki|ur — ul1,2[hl1,2
< p_kalur — uly2|h|12 + pikslur — ul12|hli2 + kaur — ul12]hl1,2
< (k14 p—ka + piks)|ur — ulr 2]h|1,2,

and so v — FE’(u) is continuous. Similar argument can be applied to the
differentiability of the functions f;, i =1, 2. O

Theorem 3.1. There exists a minimizer ug € H of
E(w) = p-u(~a)®+ piu(a)?
(26) +/ u?ds +p / sin[(u(s) — u(€)) + (s — &)]déds,

-—a
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with side conditions

(27a) /a sin(u(s) + s)ds = 0,

—Q

(27b) /a cos(u(s) + s)ds = 2sina.

—a

Moreover, for some (uy,p2) in R,
E'(uo) = p1.fi(uo) + p2f3(uo)-

Proof. There exists a closed ball B that contains an element «; in S and, using
the Lemma 3.4, has a large enough radius R such that F(u) < E(u) for any
u not in B. Lemma 3.2 implies that the set A = BN S is weakly closed and
bounded. It follows from the theorem [1] that E is bounded below and assumes
its minimum at some ug in A. If u € S\ B then E(ug) < E(u1) < E(u) and
therefore the minimum of E on S is attained at wug.

Now, it is needed to show that, for each (w1, w2) € R?, there exist h € H
such that

(28) le('ll,o)h = W;, 7= 1, 2

to apply to the surjective implicit function theorem to Lagrange Multiplier
Rule Theorem {8, p.270]. Let h(s) = c1 cos(ug(s) + s) + 2 sin(uo(s) + s), where
c1 and cy are constants. The (28) implies that we need to find ¢; and ¢z such
that

- /a sin(uo(s) + ) cos(uo(s) + s)ds

—a

— ¢y /a sin(uq(s) + s) sin(ug(s) + s)ds = wy,

—a

a1 /_ cos(ug(s) + s) cos(ug(s) + s)ds

+c2 /a sin{ug(s) + s) cos(ug(s) + s)ds = wa.

—a
This can be done if the determinant

det = /a sin® (ug(s) + ) /a cos?®(ug(s) + s)

—a -

_ [ / " sin(uo(s) + 8) cos(uo(s) + s)] :

-

PR i_ ([/—2(:052@0(3) + s)]2 + [/_zsin2(uo(3) +8)J2>
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is nonzero. Holder inequality yields

a

det > a? — i [2(1/& cos? 2(ug(s) + s) + 2a/ sin® 2(ug(s) + S)J2

—a —a
=0,

however, the equality in above inequality holds when sin 2(ug(s)+s) = constant
and cos2(ug(s) + s) = constant. From the side condition [ sin(ug(s) +
s)ds = 0, up(s) + s = nm, n = 0,£1,+2,... which contradicts the constraint
J2, cos(ug(s)+s)ds = 2sina. Thus ug(s)+s cannot be constant and det(M) >
0. Hence, c;, ¢ = 1,2 will be determined uniquely and the theorem [8, p.270]
can be applied. O

Theorem 3.2. If ug € WH2(—a,a) N S satisfies
(29) E'(ug)h = p f1(uo)h + pafy(uo)h  for all h € WhH?(—a,a)

for some constants p1 and pa, then uo € C?[—a,a), and

]

u§—p [ cosfuols) = uo(€) + (s ~ §1dé + pinacos(uo(s) + 5
(30)

—a

= % sin(ug(s) + s) — k2 cos(uo(s) + s),

2
(31a) (=) — p_uo(~a) =0,
(31b) uo(a) + pruo(a) = 0.

Proof. Let us bring back the equation

E'(up)h = 2p_up(—a)h(—a) + 2p,up(a)h(a) + /a 2u\h'ds

—a

(32) 4 [ " ) / " cosfun(s) — uolE) + (s — £))déds

—a

_p/_"; /—sa h(£) cos[uo(s) — ug(&) + (s — &)]deds.

The change of the order of integration of the last term in the equation (32) on
the right hand side and the constraints furnish

[ [ ey costuots) = uate) + (s — &)deas
:/—a —h(s) [/_s cos(ug(s) — uo(€) + (s — £))d€ — 2sinacos(up(s) + s)] ds.

a a
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Thus the equation (32) is changed to
E/(UQ)h

= 2p_ug(—a)h(—a) + 2p;up(a)h(a) + /a 2ugh/

+ /-a h(s)2p [/_s cos|(uo(s) — uo(€) + (s — &)]d€ — sina cos(uo(s) + s)| ds.

Now, define

k(s) = 2p/ cosfug(s) — uo(&) + (s — £)]d¢ — 2psinacos(ug(s) + )
+ p1 sin(ug(s) + 8) — p2 cos(ug(s) + s).
Then the above equation (29) is reduced to

2p_up(—a)h(—a) + 2p+up(a)h(a) + 2/ uph/(s)ds = —/ k(s)h(s)ds
for all h € W01’2(—a,a). Since k(s) is continuous, regularity [4, p65] implies
that uf, is absolutely continuous, and thus ug € C?[—a, a]. Integration by part
yields
2p—tio(~a) — up(~a)|h(—a) + 2p+uo(a) + uh(a)]h(a)

+ ’ [—2ug(s) + k(s)]h(s)ds = 0.

[4, p.65] also implies that 2ug(s) = k(s), hence
(33a) up(—a) — p-uo(—a) =0,
(33b) wh(a) + ptio(a) = 0.

4. Conclusion

We discuss the equilibrium behaviors of circular arches constrained by tor-
sional elastic spring at both edges. In the formulation of potential energy we
take into account the resistance energy generated by torsional springs at both
ends. The consideration of the energy to keep initial circular form is a cru-
cial part to study the existence of equilibrium states, which yields the Robin
boundaries.

There is a difficulty to follow earlier discussion style. Usually boundary
conditions are given and then argument is developed under the boundary con-
ditions. However, we first investigate the minimum principal of potential energy
for each given pressure and opening angle, and next the boundary conditions
is searched. The work on variational methods for nonlinear elliptic eigenvalue
problem by F. E. Browder [1] serves the proof of the existence of solution.
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