II-COHERENT DIMENSIONS AND II-COHERENT RINGS

Lixin Mao

Abstract. R is called a right II-coherent ring in case every finitely generated torsionless right R-module is finitely presented. In this paper, we define a dimension for rings, called II-coherent dimension, which measures how far away a ring is from being II-coherent. This dimension has nice properties when the ring in question is coherent. In addition, we study some properties of II-coherent rings in terms of preenvelopes and precovers.

1. Introduction

Recall that R is called a right II-coherent ring [3] in case every finitely generated torsionless right R-module is finitely presented. This notion is also called strong coherence in [12]. R is called a right coherent ring in case every finitely generated right ideal is finitely presented. Clearly, we have the following implications:

right Noetherian rings ⇒ right II-coherent rings ⇒ right coherent rings.

But the converse does not hold generally (see [3]). II-coherent rings have been studied by many authors (see, for example, [3, 4, 6, 12, 21]).

The concept of FGT-injective dimensions for modules and rings were introduced in [4]. The FGT-injective dimension of a right R-module M, denoted by $\text{FGT} - \text{Id}(M)$, is defined as the smallest integer $n \geq 0$ such that $\text{Ext}_R^{n+1}(N, M) = 0$ for any finitely generated torsionless right R-module N. If no such n exists, set $\text{FGT} - \text{Id}(M) = \infty$. Put $r\text{FGT} = \text{I. dim}(R) = \sup\{\text{FGT} - \text{Id}(M) : M \text{ is any right R-module}\}$ and call $r\text{FGT} = \text{I. dim}(R)$ the right FGT-injective dimension of R. It is known that $r\text{FGT} = \text{I. dim}(R) = 0$ if and only if R is a right II-coherent left semihereditary ring (see [4]). So the right FGT-injective dimension of a ring R measures how far away R is from being a right II-coherent left semihereditary ring.

Recall that a right R-module M is called FP-injective (or absolutely pure) [19, 15] in case $\text{Ext}_R^1(N, M) = 0$ for all finitely presented right R-modules N. In [16], Mao and Ding introduced the concept of FP-projective dimensions.

Received February 10, 2006.

2000 Mathematics Subject Classification. 16P70, 16D40, 16D50.

Key words and phrases. II-coherent dimension, II-coherent ring, FGT-injective module, FGT-flat module, FGT-injective dimension, preenvelope, precover.

©2007 The Korean Mathematical Society
The FP-projective dimension of a right R-module M, denoted by $fpd(M_R)$, is defined as the smallest integer $n \geq 0$ such that $\text{Ext}_R^{n+1}(M, N) = 0$ for any FP-injective right R-module N. If no such n exists, set $fpd(M_R) = \infty$. M is called FP-projective if $fpd(M_R) = 0$, i.e., $\text{Ext}_R^1(M, N) = 0$ for any FP-injective right R-module N.

In Section 2 of the present paper, we define a dimension for rings, which measures how far away a ring is from being II-coherent. Put $r.\pi cD(R) = \sup\{fpd(M_R) : M_R$ is a finitely generated torsionless right R-module$\}$ and call $r.\pi cD(R)$ the right II-coherent dimension of R. This dimension has nice properties when the ring in question is coherent. For example, it is true that $rFGT - I. \dim(R) \leq wD(R) + r.\pi cD(R)$ for a right coherent ring R. Let R and S be right coherent rings, we show that $r.\pi cD(R \otimes S) = \sup\{r.\pi cD(R), r.\pi cD(S)\}$. We also consider the II-coherent dimensions under changes of rings, especially under excellent extensions of rings. It is proven that, if R and S is right coherent rings and S is an excellent extension of R, then $r.\pi cD(S) = r.\pi cD(R)$.

In Section 3, we study some properties of II-coherent rings in terms of preenvelopes and precovers. Let R be a right II-coherent ring. We first prove that every left R-module has an FGT-flat preenvelope, and every right R-module has an FGT-injective cover, where a right R-module M (a left R-module Q) is called FGT-injective (FGT-flat) (see [4]) if $\text{Ext}_R^1(N, M) = 0$ ($\text{Tor}_R^1(N, Q) = 0$) for any finitely generated torsionless right R-module N. Next we show that the following are equivalent: (1) R_R is FGT-injective. (2) Every left R-module has a monic FGT-flat preenvelope. (3) Every right R-module has an epic FGT-injective cover. It is also shown that the following are equivalent: (1) $rFGT - I. \dim(R) \leq 1$. (2) Every left R-module has an epic FGT-flat envelope. (3) Every right R-module has a monic FGT-injective cover. Finally we prove that the following are equivalent: (1) $rFGT - I. \dim(R) \leq 2$. (2) Every right R-module has an FGT-injective cover with the unique mapping property.

Throughout this paper, all rings are associative with identity and all modules are unitary. We write M_R (rM) to indicate a right (left) R-module. $wD(R)$ stands for the weak global dimension of a ring R. For an R-module M, $pd(M)$ denotes the projective dimension of M, the dual module $\text{Hom}_R(M, R)$ is denoted by M^*, and the character module M^+ is defined by $M^+ = \text{Hom}_Z(M, \mathbb{Q}/\mathbb{Z})$. General background materials can be found in [10, 13, 18, 22].

2. II-Coherent dimensions

We start with the following

Definition 2.1. Let R be a ring. Put $r.\pi cD(R) = \sup\{fpd(M_R) : M_R$ is a finitely generated torsionless right R-module$\}$ and call $r.\pi cD(R)$ the right II-coherent dimension of R. Similarly, we have $l.\pi cD(R)$.

Proposition 2.2. The following are equivalent for a ring R:

1. $r.\pi cD(R) = 0$.

(2) R is a right II-coherent ring.
(3) Every FP-injective right R-module is FGT-injective.

Proof. (1) \Rightarrow (2). Let M be a finitely generated torsionless right R-module. Then $\text{Ext}_R^1(M, N) = 0$ for any FP-injective right R-module N by (1). Therefore M is finitely presented by [8], and so R is a right II-coherent ring.

(2) \Rightarrow (3) \Rightarrow (1) are clear by definition.

Remark 2.3. (1) By Proposition 2.2, the right II-coherent dimension $r\pi cD(R)$ measures how far away a ring R is from being right II-coherent. It is known that right II-coherent rings need not be left II-coherent (see [13, Example 4.46 (e)]), so $r\pi cD(R) \neq l\pi cD(R)$ in general.

(2) If R is a left FP-injective ring (i.e., $_RR$ is FP-injective), then every finitely presented right R-module is torsionless by [11, Theorem 2.3], and so every FGT-injective right R-module is FP-injective. In this case, R is a right II-coherent ring if and only if FGT-injective right R-modules coincide with FP-injective right R-modules by Proposition 2.2.

The next lemma will be used frequently in the sequel.

Lemma 2.4. [16, Proposition 3.1] Let R be a right coherent ring. For any right R-module M and integer $n \geq 0$, the following are equivalent:

1. $fpd(M) \leq n$.
2. $\text{Ext}_R^{n+1}(M, N) = 0$ for any FP-injective right R-module N.
3. $\text{Ext}_R^{2n+j}(M, N) = 0$ for any FP-injective right R-module N and $j \geq 1$.
4. There exists an exact sequence $0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$, where each P_i is FP-projective.

Proposition 2.5. The following are equivalent for a right coherent ring R:

1. $r\pi cD(R) \leq 1$.
2. For any exact sequence of right R-modules $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ with A FP-injective and B injective, C is FGT-injective.
3. For any pure submodule N of an injective right module M, the quotient M/N is FGT-injective.

Proof. (1) \Rightarrow (2). Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of right R-modules with A FP-injective and B injective. If M is a finitely generated torsionless right R-module, then $fpd(M) \leq r\pi cD(R) \leq 1$ by (1). Thus $\text{Ext}_R^1(M, C) \cong \text{Ext}_R^2(M, A) = 0$ by Lemma 2.4, and so C is FGT-injective.

(2) \Rightarrow (3) is obvious since N is FP-injective.

(3) \Rightarrow (1). Let M be a finitely generated torsionless right R-module and N an FP-injective right R-module. Then there exists an exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with E injective. So L is FGT-injective by (3) since N is a pure submodule of M. Thus $\text{Ext}_R^2(M, N) \cong \text{Ext}_R^1(M, L) = 0$, and hence $fpd(M) \leq 1$. It follows that $r\pi cD(R) \leq 1$. □

Proposition 2.6. Let R be a right coherent ring. Then
(1) \(\text{sup}\{\text{FGT} - \text{Id}(M) : M \text{ is an FP-injective right } R\text{-module}\} \leq r.\pi c D(R) \);
(2) \(r.\text{FGT} - I. \dim(R) \leq \text{sup}\{\text{pd}(F) : F \text{ is a finitely generated torsionless } R\text{-module}\} \leq wD(R) + r.\pi c D(R) \).

Proof. (1). We may assume that \(r.\pi c D(R) = n < \infty \). Let \(M \) be an FP-injective right \(R\)-module and \(N \) any finitely generated torsionless right \(R\)-module. Then \(\text{fpd}(N) \leq n \). Thus \(\text{Ext}^{n+1}_R(N, M) = 0 \) by Lemma 2.4, and so \(\text{FGT} - \text{Id}(M) \leq n \). Consequently \(\text{sup}\{\text{FGT} - \text{Id}(M) : M \text{ is any FP-injective right } R\text{-module}\} \leq r.\pi c D(R) \).

(2). It is easy to check that \(r.\text{FGT} - I. \dim(R) \leq \text{sup}\{\text{pd}(F) : F \text{ is a finitely generated torsionless } R\text{-module}\} \).

Now we assume that, without loss of the generality, both \(r.\pi c D(R) \) and \(wD(R) \) are finite. Let \(r.\pi c D(R) = m < \infty \) and \(wD(R) = n < \infty \). Suppose \(M \) is a finitely generated torsionless right \(R\)-module, then \(\text{fpd}(M) \leq m \). So by Lemma 2.4, \(M \) admits an FP-projective resolution

\[
0 \rightarrow P_m \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,
\]

where each \(P_i \) is FP-projective. Note that \(\text{pd}(P_i) \leq wD(R) = n \) by [16, Theorem 4.2], \(i = 0, 1, 2, \ldots , m \). It follows that \(\text{pd}(M) \leq m + n \) by dimension shifting, and hence \(r.\text{FGT} - I. \dim(R) \leq m + n \), as desired. \(\square \)

Theorem 2.7. Let \(R \) and \(S \) be right coherent rings. Then

\[
r.\pi c D(R \oplus S) = \text{sup}\{r.\pi c D(R), r.\pi c D(S)\}.
\]

Proof. We first show that \(r.\pi c D(R \oplus S) \leq \text{sup}\{r.\pi c D(R), r.\pi c D(S)\} \). We may assume that \(r.\pi c D(R) = m < \infty, r.\pi c D(S) = n < \infty \), and \(m \geq n \). Let \(M \) be a finitely generated torsionless right \((R \oplus S)\)-module. Then \(M \) has a unique decomposition that \(M = A \oplus B \), where \(A = M(R, 0) \) is a right \(R\)-module and \(B = M(0, S) \) is a right \(S\)-module via \(x r = x(r, 0) \) for \(x \in A, r \in R \), and \(y s = y(0, s) \) for \(y \in B, s \in S \). It is easy to verify that \(A \) is a finitely generated torsionless right \(R\)-module and \(B \) is a finitely generated torsionless right \(S\)-module. Thus \(\text{fpd}(A_R) \leq m \) and \(\text{fpd}(B_S) \leq n \leq m \). By Lemma 2.4, there exist two exact sequences

\[
0 \rightarrow P_m \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0
\]

and

\[
0 \rightarrow Q_m \rightarrow Q_{m-1} \rightarrow \cdots \rightarrow Q_1 \rightarrow Q_0 \rightarrow B \rightarrow 0
\]

of right \(R\)-modules and right \(S\)-modules respectively, where each \(P_i \) is an FP-projective right \(R\)-module, and each \(Q_i \) is an FP-projective right \(S\)-module. Regarding these as exact sequences of right \((R \oplus S)\)-modules, we have an exact sequence of right \((R \oplus S)\)-modules

\[
0 \rightarrow P_m \oplus Q_m \rightarrow P_{m-1} \oplus Q_{m-1} \rightarrow \cdots \rightarrow P_1 \oplus Q_1 \rightarrow P_0 \oplus Q_0 \rightarrow A \oplus B \rightarrow 0.
\]

Note that each \(P_i \oplus Q_i \) is an FP-projective right \((R \oplus S)\)-module by [16, Lemma 3.15]. Thus \(\text{fpd}(M_{R \oplus S}) \leq m \), and hence \(r.\pi c D(R \oplus S) \leq \text{sup}\{r.\pi c D(R), r.\pi c D(S)\} \).

Next we prove that \(\text{sup}\{r.\pi c D(R), r.\pi c D(S)\} \leq r.\pi c D(R \oplus S) \). We may assume that \(r.\pi c D(R \oplus S) = k < \infty \). Let \(M \) be a finitely generated torsionless right \(R\)-module. Note that \(M \) may be regarded as a finitely generated torsionless right \((R \oplus S)\)-module, so \(\text{fpd}(M_{R \oplus S}) \leq r.\pi c D(R \oplus S) = k \). Thus there
exists an exact sequence 0 → P_k → P_{k-1} → · · · → P_1 → P_0 → M → 0 of right (R ⊕ S)-modules, where each P_i is an FP-projective right (R ⊕ S)-module. Let P_i = A_i ⊕ B_i, where A_i is a right R-module and B_i is a right S-module, i = 0, 1, . . . , k. Since M is a right R-module, we have the exact sequence 0 → A_k → A_{k-1} → · · · → A_1 → A_0 → M → 0 of right R-modules. Note that each A_i is an FP-projective right (R ⊕ S)-module, and so an FP-projective right R-module by [16, Lemma 3.15], whence fpd(M_R) ≤ k, and so r.πcD(R) ≤ k. Similarly r.πcD(S) ≤ k. Thus sup{r.πcD(R), r.πcD(S)} ≤ r.πcD(R ⊕ S). The proof is complete.

□

Remark 2.8. Theorem 2.7 shows that r.πcD(⊕ \limits_{i=1}^{n} R_i) = sup \{r.πcD(R_i)\} if each R_i is right coherent. In particular, we get that ⊕ R_i is a right II-coherent ring if and only if each R_i is right II-coherent, i = 1, 2, . . . , n.

Next we investigate the II-coherent dimensions under changes of rings.

Proposition 2.9. Let R and S be right coherent rings. If ϕ : R → S is a surjective ring homomorphism with S flat as a left R-module and projective as a right R-module, then r.πcD(S) ≤ r.πcD(R).

Proof. We may assume that r.πcD(R) = n < ∞. Let M_S be a finitely generated torsionless right S-module and F_S an FP-injective right S-module. We claim that F_R is an FP-injective right R-module. In fact, if N is a finitely presented right R-module, then there is an exact sequence 0 → K → P → N → 0 of right R-modules with K finitely generated and P finitely generated projective. Since R_S is flat, we have the right S-module exact sequence 0 → K ⊗_R S → P ⊗_R S → N ⊗_R S → 0. Note that K ⊗_R S is a finitely generated right S-module, P ⊗_R S is a finitely generated projective right S-module, and so N ⊗_R S is a finitely presented right S-module. Therefore Ext^1_R(N_R, F_R) ≅ Ext^1_S(N ⊗_R S, F_S) = 0 by [18, Theorem 11.65] since F_S is FP-injective. So F_R is FP-injective. On the other hand, M_R is a finitely generated torsionless right R-module since S_R is projective. Thus fpd(M_R) ≤ r.πcD(R) ≤ n, and hence Ext^{n+1}_S(M_S, Hom_R(S, F_R)) ≅ Ext^{n+1}_R(M_R, F_R) = 0 by [18, Theorem 11.66]. Note that F_S ≅ Hom_R(S, F_R) (for ϕ is surjective), so Ext^{n+1}_S(M_S, F_S) = 0. Thus fpd(M_S) ≤ n. It follows that r.πcD(S) ≤ r.πcD(R).

□

Recall that a ring S is said to be an excellent extension of a subring R [2] if the following conditions are satisfied:

(1) R and S have the same identity and S is free with basis s_1, . . . , s_n as both a right and a left R-module, s_1 = 1_R, and Rs_i = s_iR for all i = 1, . . . , n;

(2) If M_S is a submodule of N_S and M_R is a direct summand of N_R, then M_S is a direct summand of N_S.
Theorem 2.10. Let R and S be right coherent rings. If S is an excellent extension of R, then $r.piD(S) = r.piD(R)$.

Proof. Note that R is an R-bimodule direct summand of S since S is an excellent extension of R. So we may let $RS = R \oplus T$.

We first prove that $r.piD(S) \leq r.piD(R)$. We may assume that $r.piD(R) = m < \infty$. Let N_S be a finitely generated torsionless right S-module. It is easy to see that N_R is a finitely generated torsionless right R-module. Thus $fpd(N_R) \leq m$, and so there exists an exact sequence $0 \to P_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to N \to 0$ of right R-modules, where each P_i is an FP-projective right R-module. Since RS is free, we have the exact sequence $0 \to P_m \otimes_R S \to P_{m-1} \otimes_R S \to \cdots \to P_1 \otimes_R S \to P_0 \otimes_R S \to N \otimes_R S \to 0$ of right S-modules. Note that each $P_i \otimes_R S$ is an FP-projective right S-module by [16, Lemma 3.18], and so $fpd(N \otimes_R S)_S \leq m$. Note that $(N \otimes_R S)_R \cong N_R \oplus (N \otimes_R T)$, and so we have N_S is isomorphic to a direct summand of $(N \otimes_R S)_S$ since S is an excellent extension of R. Thus $fpd(N_S) \leq fpd(N \otimes_R S)_S$, and hence $fpd(N_S) \leq m$. It follows that $r.piD(S) \leq r.piD(R)$.

Next we prove that $r.piD(R) \leq r.piD(S)$. We may assume that $r.piD(S) = n < \infty$. Let M_R be a finitely generated torsionless right R-module. It is easy to check that $M \otimes_R S$ is a finitely generated torsionless right S-module and hence $fpd(M \otimes_R S)_S \leq n$. By Lemma 2.4, there exists an exact sequence of right S-modules $0 \to Q_n \to Q_{n-1} \to \cdots \to Q_1 \to Q_0 \to M \otimes_R S \to 0$, where each Q_i is an FP-projective right S-module. Thus each Q_i is a direct summand in a right S-module U_i such that U_i is a union of a continuous chain, $(U_{\alpha,i} : \alpha < \lambda)$, for a cardinal λ, $U_{0,i} = 0$, and $U_{\alpha+1,i}/U_{\alpha,i}$ is a finitely presented right S-module for all $\alpha < \lambda$ (see [20, Definition 3.3]). It is easy to verify that $U_{\alpha+1,i}/U_{\alpha,i}$ is a finitely presented right R-module for all $\alpha < \lambda$ since S is an excellent extension of R. Thus each Q_i is an FP-projective right R-module, and so $fpd(M \otimes_R S)_R \leq n$. Since $(M \otimes_R S)_R \cong M_R \oplus (M \otimes_R T)$, we have $fpd(M_R) \leq fpd(M \otimes_R S)_R \leq n$ and hence $r.piD(R) \leq r.piD(S)$. So we have the desired equality. \hfill \Box

It has been proven that, if S is an excellent extension of R, then R is right coherent if and only if S is right coherent (see [14, Lemma 8]). As an immediate consequence of Theorem 2.10, we have

Corollary 2.11. Let S be an excellent extension of R. Then R is a right Π-coherent ring if and only if S is right Π-coherent.

3. Some properties of Π-coherent rings

Let C be a class of R-modules and M an R-module. Following [9], we say that a homomorphism $\phi : M \to C$ is a C-preenvelope of M if $C \in C$ and the abelian group homomorphism $\text{Hom}_R(\phi, C') : \text{Hom}_R(C, C') \to \text{Hom}_R(M, C')$ is surjective for each $C' \in C$. A C-preenvelope $\phi : M \to C$ is said to be a C-envelope if every endomorphism $g : C \to C$ such that $g\phi = \phi$ is an isomorphism.
Dually we have the definitions of a C-	extit{precover} and a C-	extit{cover}. C-envelopes
(C-covers) may not exist in general, but if they exist, they are unique up to
isomorphism.

Let R be a right coherent ring. It is known that every left R-module has a
flat preenvelope (see [9]) and every right R-module has an FP-injective cover
(see [17]). In this section, we will investigate the analogous properties of II-
coherent rings in terms of preenvelopes and precovers. The following lemmas
will be needed.

Lemma 3.1. Let R be a ring. Then

1. A left R-module M is FGT-flat if and only if M^+ is FGT-injective.
2. Pure submodules of FGT-flat left R-modules are FGT-flat.
3. For a short exact sequence of left R-modules $0 \rightarrow M \rightarrow N \rightarrow L \rightarrow 0$,
 if N and L are FGT-flat, then M is FGT-flat.

Proof. (1) holds by the standard isomorphism $\text{Ext}^1_R(N, M^+) \cong \text{Tor}^R_1(N, M)^+$
for any right R-module N.

(2). Let A be a pure submodule of an FGT-flat left R-module B, then
the pure exact sequence $0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0$ induces the split exact
sequence $0 \rightarrow (B/A)^+ \rightarrow B^+ \rightarrow A^+ \rightarrow 0$. Thus A^+ is FGT-injective since B^+
is FGT-injective by (1). So A is FGT-flat.

(3). Let H be a finitely generated torsionless right R-module. Then there is
an exact sequence $0 \rightarrow K \rightarrow F \rightarrow H \rightarrow 0$ with F finitely generated free. Note
that $K = \lim \rightarrow K_i$, where each K_i is a finitely generated submodule of K (see
[10, Example 1.55 (2), p. 32]). Thus each K_i is a finitely generated torsion-
less right R-module, and so $\text{Tor}^R_1(H, L) \cong \text{Tor}^R_1(K, L) = \text{Tor}^R_1(\lim \rightarrow K_i, L) \cong
\lim \rightarrow \text{Tor}^R_1(K_i, L) = 0$ since L is FGT-flat. On the other hand, we have the
exact sequence $0 = \text{Tor}^R_2(H, L) \rightarrow \text{Tor}^R_1(H, M) \rightarrow \text{Tor}^R_1(H, N) = 0$ since N is
FGT-flat. Thus $\text{Tor}^R_1(H, M) = 0$, and so M is FGT-flat. \hfill \square

Lemma 3.2. Let R be a right II-coherent ring. Then

1. A right R-module M is FGT-injective if and only if M^+ is FGT-flat.
2. Any direct limit (direct sum) of FGT-injective right R-modules is FGT-
injective.
3. Any direct product of FGT-flat left R-modules is FGT-flat.
4. Pure submodules of FGT-injective right R-modules are FGT-injective.
5. For a short exact sequence of right R-modules $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$,
 if A and B are FGT-injective, then C is FGT-injective.
6. $\text{FGT} - \text{Id}(M) \leq n$ if and only if $\text{Ext}^n_R(N, M) = 0$ for any finitely
generated torsionless right R-module N.

Proof. (1) through (3) follow from [4].

(4). Let N be a pure submodule of an FGT-injective right R-module M.
For any finitely generated torsionless right R-module L, we have the exact
sequence
\[\text{Hom}_R(L, M) \to \text{Hom}_R(L, M/N) \to \text{Ext}_R^1(L, N) \to \text{Ext}_R^1(L, M) = 0. \]

But the sequence \(\text{Hom}_R(L, M) \to \text{Hom}_R(L, M/N) \to 0 \) is exact since \(L \) is finitely presented and \(N \) is a pure submodule of \(M \). Therefore \(\text{Ext}_R^1(L, N) = 0 \) and so \(N \) is \(\text{FGT} \)-injective.

(5). The exact sequence \(0 \to A \to B \to C \to 0 \) induces an exact sequence \(0 \to C^+ \to B^+ \to A^+ \to 0 \). Note that \(B^+ \) and \(A^+ \) are \(\text{FGT} \)-flat by (1), so \(C^+ \) is \(\text{FGT} \)-flat by Lemma 3.1 (3), and hence \(C \) is \(\text{FGT} \)-injective.

(6) holds by [4]. \(\square \)

The next lemma is a special case of [1, Theorem 5].

Lemma 3.3. Let \(R \) be a ring. Then for each cardinal \(\lambda \), there is a cardinal \(\kappa \) such that for any \(R \)-module \(M \) and for any \(L \leq M \) such that \(\text{Card}(M) \geq \kappa \) and \(\text{Card}(M/L) \leq \lambda \), the submodule \(L \) contains a non-zero submodule that is pure in \(M \).

Let \(R \) be an arbitrary ring, it is easy to see that every left \(R \)-module has an \(\text{FGT} \)-flat cover by [20, Lemma 1.11 and Theorem 2.8], and every right \(R \)-module has an \(\text{FGT} \)-injective preenvelope by [7, Theorem 10]. If \(R \) is a right \(\Pi \)-coherent ring, then we can obtain additional results as follows.

Theorem 3.4. The following are true for a right \(\Pi \)-coherent ring \(R \):

1. Every left \(R \)-module has an \(\text{FGT} \)-flat preenvelope.
2. Every right \(R \)-module has an \(\text{FGT} \)-injective cover.

Proof. (1). Let \(M \) be any left \(R \)-module. By [10, Lemma 5.3.12], there is a cardinal number \(\aleph_\alpha \) such that for any homomorphism \(g : M \to L \) with \(L \) \(\text{FGT} \)-flat, there is a pure submodule \(Q \) of \(L \) such that \(\text{Card}(Q) \leq \aleph_\alpha \) and \(g(M) \subseteq Q \). Note that \(Q \) is \(\text{FGT} \)-flat by Lemma 3.1 (2), and so \(M \) has an \(\text{FGT} \)-flat preenvelope by [10, Proposition 6.2.1] since any direct product of \(\text{FGT} \)-flat left \(R \)-modules is \(\text{FGT} \)-flat by Lemma 3.2 (3).

(2). The proof is motivated by that of [17, Lemma 4.8]. Suppose that \(N \) is a right \(R \)-module with \(\text{Card}(N) = \lambda \). Let \(\kappa \) be a cardinal as in Lemma 3.3. By [10, Proposition 5.2.2], we only need to show that any homomorphism \(f : D \to N \) with \(D \) \(\text{FGT} \)-injective has a factorization \(D \to C \to N \) with \(C \) \(\text{FGT} \)-injective and \(\text{Card}(C) \leq \kappa \).

If \(\text{Card}(D) \leq \kappa \), then we have done. So we may assume that \(\text{Card}(D) > \kappa \).

Let \(K = \ker(f) \). Note that \(\text{Card}(D/K) \leq \lambda \) since \(D/K \) embeds in \(N \). Thus \(K \) contains a non-zero submodule \(D_0 \) which is pure in \(D \) by Lemma 3.3. Since \(D_0 \) is \(\text{FGT} \)-injective by Lemma 3.2 (4), \(D/D_0 \) is \(\text{FGT} \)-injective by Lemma 3.2 (5).

If \(\text{Card}(D/D_0) \leq \kappa \), then we have done since \(f \) factors through \(D/D_0 \).

Suppose that \(\text{Card}(D/D_0) > \kappa \). Note that there exists \(g : D/D_0 \to N \) with \(\ker(g) = K_1/D_0 \). So \(K_1/D_0 \) contains a non-zero submodule \(D_1/D_0 \) which is
pure in \(D/D_0 \) by Lemma 3.3. Therefore \(D/D_1 \cong (D/D_0)/(D_1/D_0) \) is FGT-injective by Lemma 3.2 (5).

If Card\((D/D_1) \leq \kappa\), then we have done since \(f \) factors through \(D/D_1 \).

If Card\((D/D_1) > \kappa\), then we can continue the process above. Ultimately we arrive at a direct limit \(\lim(D/D_i) = D/\lim D_i \) such that Card\((\lim(D/D_i)) \leq \kappa\). Note that \(\lim(D/D_i) \) is FGT-injective by Lemma 3.2 (2), and \(f \) factors through \(\lim(D/D_i) \). So \(N \) has an FGT-injective precover, and hence has an FGT-injective cover by [10, Corollary 5.2.7].

In general, an FGT-flat preenvelope or an FGT-injective cover need not be a monomorphism or epimorphism. Next, we shall consider when every left \(R \)-module has a monic or epic FGT-flat preenvelope and when every right \(R \)-module has a monic or epic FGT-injective cover in case \(R \) is a right \(II \)-coherent ring.

Theorem 3.5. The following are equivalent for a right \(II \)-coherent ring \(R \):

1. \(R_R \) is FGT-injective.
2. Every left \(R \)-module has a monic FGT-flat preenvelope.
3. Every right \(R \)-module has an epic FGT-injective cover.

If any of the above conditions holds, then \(rFGT - I. \dim(R) = 0 \) or \(\infty \).

Proof. (1) \(\Rightarrow \) (2). Let \(M \) be any left \(R \)-module. Since \((R_R)^+\) is a cogenerator in the category of left \(R \)-modules, there is an exact sequence \(0 \to M \to II(R_R)^+ \). Note that \((R_R)^+\) is FGT-flat by (1) and Lemma 3.2 (1), and so \(II(R_R)^+ \) is FGT-flat by Lemma 3.2 (3). Thus \(M \) embeds in an FGT-flat left \(R \)-module. But \(M \) has an FGT-flat preenvelope \(f : M \to F \) by Theorem 3.4 (1). So \(f \) is a monomorphism.

(2) \(\Rightarrow \) (1). Note that the injective left \(R \)-module \((R_R)^+\) embeds in an FGT-flat left \(R \)-module by (2). Thus \((R_R)^+\) is FGT-flat, and so \(R_R \) is FGT-injective.

(1) \(\Rightarrow \) (3). Let \(M \) be a right \(R \)-module. Then there is an exact sequence \(F \to M \to 0 \) with \(F \) free. Note that \(F \) is FGT-injective by (1) and Lemma 3.2 (2). Since \(M \) has an FGT-injective cover \(f \) by Theorem 3.4 (2), \(f \) is an epimorphism.

(3) \(\Rightarrow \) (1) is clear since \(R_R \) has an epic FGT-injective cover.

Now suppose that any of the equivalent conditions above holds, and \(rFGT - I. \dim(R) = n < \infty \). For any right \(R \)-module \(M \), there exists an exact sequence \(0 \to L \to F_{n-1} \to F_{n-2} \to \cdots \to F_0 \to M \to 0 \), where each \(F_i \) is free. Thus each \(F_i \) is FGT-injective by (1). So \(M \) is FGT-injective by Lemma 3.2 (6) since \(FGT - Id(L) \leq rFGT - I. \dim(R) \leq n \). It follows that \(rFGT - I. \dim(R) = 0 \).

Theorem 3.6. The following are equivalent for a right \(II \)-coherent ring \(R \):

1. \(rFGT - I. \dim(R) \leq 1 \).
2. Every left \(R \)-module has an epic FGT-flat envelope.
(3) Every right R-module has a monic FGT-injective cover.

Proof. (1) \Rightarrow (2). For any left R-module M, there is an FGT-flat preenvelope $f : M \to F$ by Theorem 3.4 (1). The exact sequence $0 \to \ker(f) \to F \to L \to 0$ induces the exactness of the sequence $0 \to L^+ \to F^+ \to (\ker(f))^+ \to 0$. Note that F^+ is FGT-injective, so $(\ker(f))^+$ is FGT-injective by Lemma 3.2 (6) since $FGT - \text{Id} \langle L \rangle \leq r F G T - I. \dim(R) \leq 1$. Thus $(\ker(f))^+$ is FGT-flat, and hence $M \to \ker(f)$ is an epic FGT-flat preenvelope, equivalently, an epic FGT-flat envelope.

(2) \Rightarrow (3). Let M be a right R-module. Write $F = \bigoplus \{N \leq M : N \text{ is } F G T \text{-injective}\}$ and $G = \bigoplus \{N \leq M : N \text{ is } F G T \text{-injective}\}$. Then there exists an exact sequence $0 \to K \to G \to F \to 0$, which induces an exact sequence $0 \to F^+ \to G^+ \to \ker(f) \to 0$. Since F^+ has an epic FGT-flat envelope by (2) and G^+ is FGT-flat, we have F^+ is FGT-flat, and so F is FGT-injective. Next we prove that the inclusion $i : F \to M$ is an FGT-injective precover of M. Let $\psi : F \to M$ with F FGT-injective be an arbitrary homomorphism. Note that $\psi(F) \subseteq F$ by the proof above. Define $\zeta : F \to F$ via $\zeta(x) = \psi(x)$ for $x \in F$. Then $i \zeta = \psi$, and so $i : F \to M$ is an FGT-injective precover of M. In addition, it is clear that the identity map 1_F of F is the only homomorphism $g : F \to F$ such that $ig = i$, and hence i is an FGT-injective cover of M.

(3) \Rightarrow (1). Let M be a right R-module. Then there is an exact sequence $0 \to M \to E \to L \to 0$ with E injective. Since L has a monic FGT-injective cover by (3), we have L is FGT-injective. Thus $FGT - \text{Id}(M) \leq 1$ and so $r F G T - I. \dim(R) \leq 1$. □

Recall that $\phi : M \to C$ is said to be a C-envelope with the unique mapping property [5] if for any homomorphism $f : M \to C'$ with $C' \subseteq C$, there is a unique homomorphism $g : C \to C'$ such that $g \phi = f$. Dually we have the definition of a C-cover with the unique mapping property.

Theorem 3.7. The following are equivalent for a right Π-coherent ring R:

1. $r F G T - I. \dim(R) \leq 2$.
2. Every right R-module has an FGT-injective cover with the unique mapping property.
 Moreover, the above conditions hold if R satisfies that
3. Every left R-module has an FGT-flat envelope with the unique mapping property.

Proof. (1) \Rightarrow (2). Let M be a right R-module. Then M has an FGT-injective cover $f : F \to M$ by Theorem 3.4 (2). It is enough to show that, for any FGT-injective right R-module G and any homomorphism $g : G \to F$ such that $fg = 0$, we have $g = 0$. In fact, there exists $\beta : F/\ker(g) \to M$ such that $\beta \pi = f$ since $\ker(g) \subseteq \ker(f)$, where $\pi : F/\ker(g) \to F/\ker(g)$ is the natural map. Note that $F/\ker(g)$ is FGT-injective by Lemma 3.2 (6) since $FGT - \text{Id}(\ker(g)) \leq 2$. Thus there exists $\alpha : F/\ker(g) \to F$ such that $\beta = f \alpha$, and so $f \alpha \pi = f$. Hence $\alpha \pi$ is an isomorphism since f is a cover. Therefore π is monic, and so $g = 0$.

(2) \Rightarrow (1). Let M be a right R-module. Then we have the exact sequence $0 \to M \to E^0 \xrightarrow{\varphi} E^1 \xrightarrow{\psi} N \to 0$, where E^0 and E^1 are injective. Let $\theta : H \to N$ be an FGT-injective cover with the unique mapping property. Then there exists $\delta : E^1 \to H$ such that $\psi = \theta \delta$. Thus $\theta \delta \varphi = \psi \varphi = 0 = \theta \theta$, and hence $\delta \varphi = 0$, which implies that $\ker(\psi) = \im(\varphi) \subseteq \ker(\delta)$. Therefore there exists $\gamma : N \to H$ such that $\gamma \psi = \delta$, and so $\theta \gamma \psi = \psi$. Thus $\theta \gamma = 1_N$ since ψ is epic. It follows that N is isomorphic to a direct summand of H, and hence N is FGT-injective. So $FGT - Id(M) \leq 2$, and hence $rFGT - I.\dim(R) \leq 2$.

(3) \Rightarrow (1). Let M be a right R-module. Then we have the exact sequence $0 \to M \to E^0 \to E^1 \to L \to 0$ with E^0 and E^1 injective. It gives rise to the exactness of the sequence

$$0 \to L^+ \xrightarrow{\psi} (E^1)^+ \xrightarrow{\varphi} (E^0)^+ \to M^+ \to 0.$$

Note that $(E^0)^+$ and $(E^1)^+$ are flat. Let $\theta : L^+ \to H$ be the FGT-flat envelope with the unique mapping property. Then there exists $\delta : H \to (E^1)^+$ such that $\psi = \theta \delta$. Thus $\varphi \theta \delta = \varphi \psi = 0$, and hence $\varphi \delta = 0$, which implies that $\im(\delta) \subseteq \ker(\varphi) = \im(\psi)$. So there exists $\gamma : H \to L^+$ such that $\psi \gamma = \delta$, and hence $\psi \gamma \theta = \psi$. Thus $\gamma \theta = 1_{L^+}$ since ψ is monic. Consequently L^+ is isomorphic to a direct summand of H, and hence L^+ is FGT-flat. Thus L is FGT-injective. It follows that $FGT - Id(M) \leq 2$, and so $rFGT - I.\dim(R) \leq 2$. \square

Finally, we consider the special case that R is a commutative Π-coherent ring.

Proposition 3.8. Let R be a commutative Π-coherent ring and n a nonnegative integer. Then $wD(R) \leq n + 1$ if and only if $FGT - I.\dim(R) \leq n$.

Proof. It is easy to verify that $FGT - I.\dim(R) = \sup\{pd(F) : F$ is a finitely generated torsionless R-module\} by Lemma 3.2 (6) since R is a Π-coherent ring.

"$\Rightarrow\"$. Let M be a finitely generated torsionless R-module. Then M^* is finitely generated by [3, Theorem 1]. So there exists an exact sequence $R^m \to M^* \to 0$ with m a nonnegative integer, which induces an exact sequence $0 \to M^{**} \to R^m$. Thus there exists an exact sequence $0 \to M \to R^m \to L \to 0$ since M is torsionless. Note that $pd(L) \leq wD(R) \leq n + 1$ by [19, Theorem 3.3] since L is finitely presented. Hence $pd(M) \leq n$, and so $FGT - I.\dim(R) \leq n$.

"$\Leftarrow\"$. Let N be a finitely presented R-module. Then there is an exact sequence $0 \to K \to F \to N \to 0$ with F finitely generated free and K finitely generated torsionless. Note that $pd(K) \leq FGT - I.\dim(R) \leq n$, and so $pd(N) \leq n + 1$. Thus $wD(R) \leq n + 1$ by [19, Theorem 3.3]. \square

Remark 3.9. (1) Let R be a commutative Π-coherent ring. Then Theorem 3.6 and 3.7 characterize respectively those rings such that $wD(R) \leq 2$ and $wD(R) \leq 3$ by Proposition 3.8.
(2) Let \(R = F[x_1, x_2, \ldots, x_n] \), the ring of polynomials in \(n \) indeterminates over a field \(F \). Then \(R \) is a commutative Noetherian ring, and hence a \(\Pi \)-coherent ring. Note that \(wD(R) = n \), and so \(FGT - I. \dim(R) = n - 1 \) by Proposition 3.8. This fact also shows that the inequality \(rFGT - I. \dim(R) \leq wD(R) + r.\pi cD(R) \) in Proposition 2.6 may be strict.

Acknowledgements. This research was partially supported by SRFDP (No. 20050284015), China Postdoctoral Science Foundation (20060390926), Collegial Natural Science Research Program of Education Department of Jiangsu Province (06KJB110033), Jiangsu qinglan gongcheng, and Jiangsu Planned Projects for Postdoctoral Research Funds (0601021B). The author would like to thank Professor Nanqing Ding for his constant encouragement and the referee for the valuable comments.

References

Department of Basic Courses
Nanjing Institute of Technology
Hongjing Road, No. 1, Jiangning District
Nanjing, Jiangsu Province, 211167, P. R. China
E-mail address: maolx2@hotmail.com