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ON THE EXPONENTIAL INEQUALITY FOR NEGATIVE
DEPENDENT SEQUENCE

TAE-SUuNnG KiM AND HYuN-CHULL KM

ABSTRACT. We show an exponential inequality for negatively associated
and strictly stationary random variables replacing an uniform bounded-
ness assumption by the existence of Laplace transforms. To obtain this
result we use a truncation technique together with a block decomposition
of the sums. We also identify a convergence rate for the strong law of
large number.

1. Introduction

Let (Q,F, P) be a probability space and {X,,n > 1} be a sequence of
random variables defined on (2, F,P). We start with definition. A finite
family {X;,..., X} is said to be negatively associated(NA) if for any disjoint
subsets A, B C {1,...,n} and any real coordinatewise nondecreasing functions

f on R4, g on RE,
CO’U(f(Xiai € A),Q(Xj,j € B)) <0.

Infinite family of random variables is NA if every finite subfamily is NA. This
concept was introduced by Joag-Dev and Proschan [4].

As pointed out and proved by Joag-Dev and Proschan [4], a number of
well-known multivariate distributions possess the NA property, such as multi-
nomial distribution, multivariate hypergeometric distribution, negatively cor-
related normal distribution, permutation distribution, and joint distribution
of ranks. Because of their wide applications in multivariate statistical analysis
and reliability theory, the concept of negatively associated random variables has
received extensive attention recently. We refer to Joag-Dev and Proschan [4]
for fundamental properties, Newman [8] for the central limit theorem, Matula
[7] for the three series theorem, Roussas [9] for the Hoeffding inequality, Shao
[10] for Rosenthal type inequality and the Kolmogorov exponential inequality,
Shao and Su [11] for the law of the iterated logarithm, Liang [6] for complete
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convergence of weighted sum and Shao [10] for maximal inequality and weak
convergence.

One of the main tools used for characterizing convergence rates in nonpara-
metric estimation has been convenient versions of Bernstein type exponential
inequalities. There exist several versions available in the literature for indepen-
dent sequences of variables with assumptions of uniform boundedness or some,
quite relaxed, control on their moments. If the independent case is classical
in the literature, the treatment of dependent variables is more recent. The
extension to dependent variables was first studied considering m-dependence
or different mixing conditions. An inequality for strong mixing variables even-
tually was proved in Carbon [2] using the same type, as for the treatment of
the independent case, of assumptions on the variables, besides the strong mix-
ing: uniformly bounded or some control on the moments. Azuma [1] proved
a version of exponential inequalities is also available for martingale differences
supposing the variables to be uniformly bounded and, more recently, Lesigne
and Volny [5] obtained an extension assuming only the existence of Laplace
transforms.

In this article we derive a rate of almost sure convergence for NA random
variables without the boundedness assumption, which is replaced by the exis-
tence of Laplace transforms(see Theorem in section 2).

2. Notation and main result

Next we introduce the notation that will be used throughout the paper. Let
{¢n,n > 1} be a sequence of nonnegative real numbers such that ¢, — +o0
and define, for each i,n > 1,

Xl,i,n = _cnl(—oo,-cn)(Xi) + Xil[—cn,cn](Xi) + C‘nl(cm-f—oo) (Xl)a
(1) X2,i,n = (Xz - cn)l(cn,+oo)(Xi)7 X3,i,n = (Xl + cn)l(—oo,—cn) (Xi)’

where 14 represents the characteristic function of the set A. For each n >
1 fixed, the variables X1 1,...,X1,n,n are uniformly bounded. Note that,
for each n > 1 fixed, all these variables are monotone transformations of the
initial variable X,. This implies that a negative association assumption is
preserved by this construction. The derivation of a convergence rate will use,
besides the truncation introduced before, a convenient decomposition of the
sums into blocks. This block decomposition is the mean to an approximation
to independence technique on the truncated variables. The tails will be treated
directly using Laplace transforms.

Consider a sequence of natural numbers p,, such that, for each n > 1,p, <
n/2 and define r,, as the greatest integer less or equal to n/2p,. Define then,
forg=1,2,3,and j=1,...,2r,

JPn
(2) Yoim = Z (Xgtn = E(Xq,l,n))-
I=(j~1)pn+1
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Finally, for each ¢ = 1,2,3, and n > 1, define

Ty Tn
Zgnjod = E Yy2i-1m5 Zamen = E Yy.2im
j=1 j=1

mn
(3) Ryn = E (Xq,l,n - E(Xq,l,n))~
1=2r,pn+1

Note that Y, jn, Zgn,ods Zgn,ev and Ry, are divided into the bounded
terms, corresponding to the index ¢ = 1, and the unbounded terms that corre-
spond to the indices ¢ = 2 and 3.

The following theorem is the main result which provides strong convergence
rate:

Theorem. Let {X,,n > 1} be a strictly stationary sequence of NA random
variables. Suppose that, for some o > 0
ap,logn

(4) e =18(—"

)I/ZCn
and that there exists & > «a satisfying

(5) sup E(e'%1) < M5 < 0.
[t]<é

Then, for n large enough,
Msn? _
S)n” .

6) P(- S (X~ BX)| > ) < 4+ 5atp - logn)?

i=1
3. Proof of Theorem

We start with a general lemma used to control some of the terms appearing
in the course of proof.

Lemma 3.1 ([3]). Let W be a centered random variable. If there exist a,b € R
such that P(a < W < b) =1, then, for every A >0,
X2(b— a)? )

3 .
Lemma 3.2 ([8]). Let {X,,n > 1} be a sequence of NA random variables.
Then

(7) E(e") < exp(

n n
(8) E(exp Y X;) < [][E(X)]

j=1 j=1
From definitions (1) and (2) it is obvious that |Yi jn| < 2pncn, §=1,...,7n.
This enables us to use Lemma 3.1 to control the Laplace transform of these
variables. A straightforward application of Lemmas 3.1 and 3.2 produces the
following upper bounds.
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Lemma 3.3. Let {X,,n > 1} be a sequence of NA random wvariables. If
Yijnd=1,...,2r, are defined by (2) then, for every A > 0

(9) E(ekzl,n,od) _<.. exp()\2npnci)

and analogously for the term corresponding to Z1 p ey-

Proof. According to (3) and the fact that the variables defined in (1) are NA
we have, from a direct application of Lemmas 3.1 and 3.2

E(e?imed) = Blexp M) Y12j-1,n))
Jj=1
A2 (4Cnpn)2

Tn
< HE(ez\Yl,Zj—l,n) < exp( 5

J=1

) < exp()\znpnci)

since 2rpp, < n. Similarly, the result for the term corresponding to 21 m,ev 18

derived. O

We may now prove an exponential inequality for the sum of odd indexed or
even indexed terms.

Lemma 3.4. Let {X,,n > 1} be a strictly stationary sequence of NA random
variables. Then, for every e € (0,1),

n62

324pnc2 )

and analogously for the term corresponding to Z1 ey

(10) P(%[Zl,n,odl > ) < 2exp(~

Proof. Applying Markov’s inequality and using the previous lemma we find
that, for every A > 0,

1 € 1 € 1 €
P(—|Z >—-) = P(—Z =)+ P{(—(—Z1nod) > =
(nl l,n,odl 9) (n 1,n,0d > 9) + (’I’L( 1,n, d) 9)
— P(e/\zl,n,od > e%) _+_ P(e_hzl,n,od > exge)
(11) < 2exp(Mnpnc? — )\nE).

9
Optimizing the exponent in the term of this upper bound we find A =
€/18pnc2, so that this exponent becomes equal to —ne?/324p,c2. The proof is
complete. O

To complete the treatment of the bounded terms it remains to consider the
sum corresponding to the indices following 2r,py,, that is, Ry ,.

Lemma 3.5. Let {X,,n > 1} be a strictly stationary sequence of NA random
variables and Ry ,, be defined as in (3). Suppose that

(12) 2.

T
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Then, for n large enough and every € > 0, we have

(13) P(|Ry1n} > ne) = 0.

Proof. As Rin =31y, , +1(X1,5n — E(X1,.,n)) it follows that
|R1,n] € 2(n— 2rapn)en < 2¢,,

according to the construction of the sequences r,, and p,. Now
P(|Ri.n| > ne) < P(2 > ne/ey)

and, using (12), this is zero for n large enough. O

In order to prove the almost sure convergence of -71; Yoo (Xiin— E(X1i0))
and identify a convergence rate we will allow € in the previous lemmas to depend
on 7 in such a way as to define a convergent series in the upper bound.

Taking € as in (4) and tracking back the proof Lemma 3.4, the choice of €
means that the optimizing value of A would now be A = = (alogn/npy)"/2.

Inserting these expressions in (11) and repeating the arguments would lead
to the following result.

Lemma 3.6. Let {X,,n > 1} be a strictly stationary sequence of NA random
variables. Then, for € as in (4), we have

1 €
(14) P(;|Zl,n,od| > §) < 271—&,

and analogously for Zi n ev.

As for the term Ry ., it is treated exactly as in Lemma 3.5.

Repeating the arguments used in that lemma we would be left with the term
P(2 > ne/cy). But ne/c, ~ (npnlogn)'/? — 400, so the argument of Lemma,
3.5 still applies.

We may now state a theorem summarizing the partial results described in
the lemmas of this section.

Theorem. Let {X,,n > 1} be a strictly stationary sequence of NA random
variables. Then, for € as in (4) and n large enough,

1, — €
1 P(- Xiin—EXiin )< 2n7°.
(15) G Kain = Bl > ) < 20

Proof. Tt suffices to write
1 n
P(~| Z;(Xl,i,n — E(X1,i,n))| > €)
¢ ne

3 3 )
and apply the previous lemmas. 0

1
S P(E|Zl,n,od| >

1 €
)+P(E|Zl,n,ev| > 5) ‘f‘P(lRl,nl >
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Note that the result just proved implies the convergence to zero of the upper
bound in (15) but implies the almost sure convergence to zero of

1 n
;’;I Z(Xl,i,n - E(Xl,z,n))l
i=1
only if we may choose o > 1.

The variables X5 ;» and X3;, are NA but not bounded, even for fixed n.
This means that Lemma 3.1 may not be applied to the sums of such terms. But
we may note that these variables depend only on the tails of the distribution of
the original variables. So, by controlling the decrease rate of these tails we may
prove an exponential inequality for sums of X5 ; , or X3 ; ,,. For this control we
will not use of the block decomposition of the sums > (Xgin — E(Xgin))
as the condition derived would be exactly the same as the one obtained with a
direct treatment.

We have, for ¢ = 2, 3, recalling that the variables are identically distributed,

P(| Z(Xq,i,n — E(Xy,in)) > ne)

nP(Xg1n — E(Xq1n))l > €)
n n
S G_ZVG'T(X‘I’L”) < 6—2E(X2 )

IA

= q,1,n

Lemma 3.7. Let {Xn,n > 1} be a strictly stationary sequence of NA random
variables such that there exists 6 > 0 satisfying

sup E[e'™X] < M;s < +o0.
[t]<é

Then, fort € (0,4),

n

2Msneten
(16) P(] Z(Xq,i,n — E(Xq,in))l > ne) < e 1733
i=1
Proof. According to the inequality stated before this lemma it remains to con-

trol E(Xg,l,n) for ¢ = 2,3. Let us fix ¢ = 2, the other possible choice being
treated analogously. We will set F(z) = P(X; > z). Now, using Markov’s in-
equality it follows that, for ¢t € (0,6), F(z) < e™**E(etX1) < Mse™t*. Writing
the mathematical expectation as a Stieljes integral and integrating by parts we
find

B0 = [

(cn,o0)

—tcp

t2

_ too e
(z — c,)?F(dzx) = / 2(z — cp)F(z)dz < 2M;

from which the result (16) follows. O

Note that for this step the negative association of variables is irrelevant.
Finally, we show the main theorem by using the above results.
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Proof of Theorem. Separate the sum in left of (6) into three terms as in section
2 and apply (15) and (16) with €/3 in place of € for the latter. Then choose
t = o and ¢, = logn in (16), so that the exponents are equal, and recalculate
€ for this choice of ¢,. Then the result (6) follows. a

Remark. Notice that this result requires some extra assumptions on the choice
of a in order to derive the almost sure convergence with rate

e~ 012 /pl /2 (10g )32,
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