DOI QR코드

DOI QR Code

경단구슬모자반(Sargassum muticum) 추출물의 항산화 및 항균활성

Antioxidative and Antimicrobial Activities of Sargassum muticum Extracts

  • 김지영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 이정아 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 김길남 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 윤원종 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 이욱재 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 박수영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소)
  • Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Kil-Nam (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Lee, Wook-Jae (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
  • 발행 : 2007.06.30

초록

본 연구는 갈조류인 모자반속 중에서 경단구슬모자반(Sargassum muticum)을 대상으로 에탄올추출 및 용매분획하여 항산화활성 및 항균활성을 비교 분석하였으며, 아울러 총 폴리페놀 및 플라보노이드 함량 변화를 측정하여 그 상관성 등을 조사함으로써 식품 저장성이나 안전성을 향상하기위한 식품첨가제나 보존제로서의 개발 가능성을 알아보고자 하였다. 그 결과 경단구슬모자반 에탄올 추출물 및 순차적 분획물의 항산화활성은 처리 농도가 높아질수록 항산화활성도 비례해서 증가되었으며, 특히 순차적 용매분획물 중 디클로로메탄과 에틸아세테이트 분획물에서 항산화활성이가장 우수하게 나타났다. 또한 항균활성은 순차적 용매분획물 중에 디클로로메탄 분획물이 본 실험에 사용된 6종의 균주 모두에서 가장 효율적인 항균활성을 보여 주었다. 이러한 경단구슬모자반 에탄올 추출물과 순차적 분획물별 항산화 및 항균활성 결과는 총 폴리페놀 및 플라보노이드의 함량과 유의한 양의 상관관계를 나타내었으며, 한편 총 폴리페놀 함량은 에틸아세테이트 분획물>디클로로메탄 분획물>부탄올 분획물>헥산 분획물>에탄올 추출물>수용성 분획물순으로, 총 플라보노이드 함량은 에틸아세테이트 분획물>디클로로메탄 분획물>헥산 분획물>부탄올 분획물>에탄올추출물>수용성 분획물 순으로 나타났다.

The solvent extracts of Sargassum muticum, which were extracted by using several solvents with different polarities, were prepared for use as natural preservatives. The S. muticum extract with 80% ethanol was sequentially fractionated with n.hexane, dichloromethane, ethylacetate, and butanol. In order to effectively screen for natural preservatives agents, we first investigated the antioxidant activities such as DPPH radical scavenging capacity, superoxide radical scavenging capacity, and xanthine oxidase inhibitory activity of the S. muticum extracts. Through the screening system, we found that dichloromethane and ethylacetate fraction had high antioxidant activity with increments of the extract concentration. The antimicrobial activities and cell growth inhibition were investigated for each strain with the different concentrations of S. muticum extracts. Antimicrobial activities were shown in ethanol, dichloromethane, and n.hexane fractions of S. muticum. However, butanol, ethylacetate and water fractions showed weak antimicrobial activity against the tested microorganisms. Among the five fractions, dichloromethane fraction showed the highest antimicrobial activities against microorganisms tested, such as Bacillus sublitis, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Enteritidis and Pseudomonas aeruginosa. The polyphenolic compounds from ethanol, n.hexane, dichloromethane, ethylacetate, butanol, and water fractions were 63.96 mg/g, 8.49 mg/g, 28.11 mg/g, 172.64 mg/g, 114.56 mg/g, and 34.91 mg/g, respectively. The dichloromethane fraction could be suitable for development as a food preservative.

키워드

참고문헌

  1. Beuchat LR, Golden DA. 1989. Antimicrobials occurring naturally in food. Food Technol 43: 134-139
  2. Kim HY, Lee YJ, Kim SH, Hong KH, Kwon YK, Lee JY, Ha SC, Cho HY, Chang IS, Lee CW, Kim KS. 1999. Studies on the development of natural preservatives from natural products. Korean J Food Sci Technol 31: 1667-1678
  3. Kim JY, Lee JA, Yoon WJ, Oh DJ, Jung YH, Lee WJ, Park SY. 2006. Antioxidative and antimicrobial activities of Euphorbia jolkini extracts. Korean J Food Sci Technol 38: 699-706
  4. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63 https://doi.org/10.1007/BF02901825
  5. Park JH, Kang KC, Baek SB, Lee YH, Rhee KS. 1991. Separation of antioxidant compounds from edible marine algae. Korean J Food Sci Technol 23: 256-261
  6. Kubo I, Muroi H, Kubo A. 1995. Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg Med Chem 3: 873-880 https://doi.org/10.1016/0968-0896(95)00081-Q
  7. Sakanaka S, Juneja LR, Taniguchi M. 2000. Antimicrobial effects of green tea polyphenols on thermophilic spore- forming bacteria. J Biosci Bioeng 90: 81-85 https://doi.org/10.1263/jbb.90.81
  8. Cho MH, Bae EK, Ha SD, Park JY. 2005. Application of natural antimicrobials to food industry. Food Sci Ins 38: 36-45
  9. Lee JH, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J Food Sci Technol 26: 317-323
  10. Topisirovic L, Kojic M, Fira D, Golic N, Strahinic I, Lozo J. 2006. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int J Food Microbiol 112: 230-235 https://doi.org/10.1016/j.ijfoodmicro.2006.04.009
  11. Park SK, Park JC. 1994. Antimicrobial activity of extracts and coumaric acid isolated from Artemisia princeps var. orientalis. Korean J Biotechnol Bioeng 9: 506-511
  12. Yang JY, Han JH, Kang HR, Hwang MK, Lee JW. 2001. Antimicrobial effect of mustard, cinnamon, Japanese pepper and horseradish. J Fd Hyg Safety 16: 37-40
  13. Kim JS, Koo KM, Jung YH, Yang JG, Lee GG. 2004. Antimicrobial activities of Zanthoxylum schinifolium extract against Vibrio parahaemolyticus. J Korean Soc Food Sci Nutr 33: 500-504 https://doi.org/10.3746/jkfn.2004.33.3.500
  14. Kim OM, Kim MK, Lee KR, Kim SD. 1998. Selective antimicrobial effects of spice extracts against Lactobacillus plantarum and Leuconostoc mesenteroides isolated from Kimchi. Kor J Appl Microbiol Biotechnol 26: 373-378
  15. Mabeau S, Fleurence J. 1993. Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4: 103-107 https://doi.org/10.1016/0924-2244(93)90091-N
  16. Kim YM, Kim DS, Choi YS. 2004. Anticoagulant activities of brown seaweed extracts in Korea. Korean J Food Sci Technol 36: 1008-1013
  17. Jimenez-Escrig A, Goni Cambrodon I. 1999. Nutritional evaluation and physiological effect of edible seaweeds. Arch Latinoam Nutr 49: 114-120
  18. Oak JH, Lee IK. 2005. Taxonomy of the genus Sargassum (Fucales, Phaeophyceae) from Korea; I. Subgenus Bactrophycus section Teretia. Algae 20: 77-90 https://doi.org/10.4490/ALGAE.2005.20.2.077
  19. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 https://doi.org/10.1038/1811199a0
  20. Nishikimi M, Roa NA, Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46: 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
  21. Fridovich I. 1970. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245: 4053-4057
  22. Davidson PM, Parish ME. 1989. Method for testing the efficacy of food antimicrobials. Food Technol 43: 148-155
  23. Amster D. 1996. Susceptibility testing of antimicrobial in liquid media, antibiotics in laboratory medicine. 4th ed. Williams and Wikins, MD, USA. p 52-111
  24. Gutfinger T. 1981. Polyphenols in olive oils. J Am Oil Chem Soc 58: 966-968 https://doi.org/10.1007/BF02659771
  25. Jia Z, Tang M, Wu J. 1999. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  26. Halliwell B. 1991. Drug antioxidant effects. A basis for drug selection. Drug 42: 569-605 https://doi.org/10.2165/00003495-199142040-00003
  27. Cheng ZJ, Kuo SC, Chan SC, Ko FN, Teng CM. 1998. Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim Biophys Acta 1392: 291-299 https://doi.org/10.1016/S0005-2760(98)00043-5
  28. Kwak CH, Kim SA, Lee MS. 2005. The correlation of antioxidative effects of 5 Korean common edible seaweeds and total polyphenol content. J Korean Soc Food Sci Nutr 34: 1143-1150 https://doi.org/10.3746/jkfn.2005.34.8.1143
  29. Lee JH, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J Food Sci Technol 26: 317-323
  30. Shin SJ, Kwon SK, Lee KH, Sung ND, Choi WY. 1994. Extraction and characterization of antibacterial components from the roots of evening primrose (Onenothera odarata Jacquin). J Agric Sci 21: 54-59
  31. Jimenez-Escrig A, Goni Cambrodon I. 1999. Nutritional evaluation and physiological effect of edible seaweeds. Arch Latinoam Nutr 49: 114-120
  32. Yan X, Chuda Y, Suzuki M, Nagata T. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechem 63: 605-607 https://doi.org/10.1271/bbb.63.605

피인용 문헌

  1. The ethyl acetate fraction ofSargassum muticumattenuates ultraviolet B radiation-induced apoptotic cell death via regulation of MAPK- and caspase-dependent signaling pathways in human HaCaT keratinocytes vol.52, pp.9, 2014, https://doi.org/10.3109/13880209.2013.879186
  2. Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics vol.58, 2014, https://doi.org/10.1016/j.indcrop.2014.03.041
  3. Synergistic Antimicrobial Effect of Sargassum serratifolium (C. Agardh) C. Agardh Extract against Human Skin Pathogens vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.241
  4. Anti-inflammatory effects of apo-9′-fucoxanthinone from the brown alga, Sargassum muticum vol.21, pp.1, 2013, https://doi.org/10.1186/2008-2231-21-62
  5. Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities vol.28, pp.6, 2016, https://doi.org/10.1007/s10811-016-0872-x
  6. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line vol.14, pp.4, 2016, https://doi.org/10.3892/mmr.2016.5655
  7. Anti-Obesity Activity of Saringosterol Isolated from Sargassum muticum (Yendo) Fensholt Extract in 3T3-L1 Cells 2017, https://doi.org/10.1002/ptr.5892
  8. Hydrothermal fractionation of Sargassum muticum biomass vol.24, pp.6, 2012, https://doi.org/10.1007/s10811-012-9817-1
  9. Biological Analysis of Enzymatic Extracts from Sargassum fulvellum Using Polysaccharide Degrading Enzyme vol.28, pp.6, 2013, https://doi.org/10.7841/ksbbj.2013.28.6.349
  10. α-Glucosidase Inhibitory Effects for Solvent Fractions from Methanol Extracts of Sargassum fulvellum and Its Antioxidant and Alcohol-Metabolizing Activities vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1420
  11. Apo-9′-Fucoxanthinone, Isolated from Sargassum muticum, Inhibits CpG-Induced Inflammatory Response by Attenuating the Mitogen-Activated Protein Kinase Pathway vol.11, pp.9, 2013, https://doi.org/10.3390/md11093272
  12. Bioactive Polysaccharides Extracts fromSargassum muticumby High Hydrostatic Pressure vol.41, pp.1, 2017, https://doi.org/10.1111/jfpp.12977
  13. Antimicrobial Action of Compounds from Marine Seaweed vol.14, pp.3, 2016, https://doi.org/10.3390/md14030052
  14. Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum against Ultraviolet B–Irradiated Damage in Human Keratinocytes vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12118146
  15. Antimicrobial, Antioxidant, Anticancer Activity and Phytochemical Analysis of the Red Alga, Laurencia papillosa vol.14, pp.4, 2018, https://doi.org/10.3923/ijp.2018.572.583
  16. Green technologies for cascade extraction of Sargassum muticum bioactives pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1725-6
  17. Anti-Arthritis Effect through the Anti-Inflammatory Effect of Sargassum muticum Extract in Collagen-Induced Arthritic (CIA) Mice vol.24, pp.2, 2019, https://doi.org/10.3390/molecules24020276
  18. 이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성 vol.31, pp.4, 2007, https://doi.org/10.14478/ace.2020.1051