DOI QR코드

DOI QR Code

Hierarchical Simulation for Real-time Cloth Animation and LOD control

실시간 옷감 애니메이션과 LOD 제어를 위한 계층적 시뮬레이션

  • 강영민 (동명대학교 정보통신대학 게임공학과)
  • Published : 2007.03.31

Abstract

In this paper, a hierarchical simulation with an approximate implicit method is proposed in order to efficiently and plausibly animate mass-spring based cloth models. The proposed hierarchical simulation method can generate realistic motion of extremely fine mesh in interactive rate. The proposed technique employs a fast and stable simulation method which approximates the implicit integration. Although the approximate method is efficient, it is extremely inaccurate and shows excessively damped behavior. The hierarchical simulation technique proposed in this paper constructs multi-level mesh structure in order to represent the realistic appearance of cloth model and performs simulation on each level of the mesh with constraints that enforce some of the mass-points of current level to follow the movement of the previous level. This hierarchical method efficiently generates a plausible movement of a cloth model composed of large number of mass points. Moreover, this hierarchical method enables us to generate realistic wrinkles on the cloth, and the wrinkle pattern on the cloth model can be easily controlled because we can specify different contraction resistance force of springs according to their hierarchical level.

본 논문에서는 사실적인 질량-스프링 기반 옷감 모델의 애니메이션을 효율적이며 사실적으로 생성하기 위해 근사된 암시적 적분법을 계층적으로 적용하는 기법을 제안한다. 제안된 계층적 시뮬레이션 방법은 매우 많은 정점을 가진 메쉬(mesh)의 사실적인 움직임을 상호작용적으로 생성할 수 있다. 이 기법은 암시적 적분법을 근사하는 빠르고 안정적인 방법을 사용한다. 이 근사 기법은 효율적이기는 하지만 극도로 부정확하며 지나치게 댐핑(damping)이 많이 일어난다. 본 논문에 제안된 계층적 시뮬레이션 기법은 메쉬 구조를 다중 단계로 구성하여 옷감 모델의 사실적인 외형을 표현하도록 하며, 각각의 단계에 시뮬레이션을 적용할 때 현재 단계의 메쉬에 존재하는 일부 질점이 이전 단계의 시뮬레이션 결과를 따르도록 한다. 이러한 계층적 시뮬레이션 방법은 많은 수의 질점으로 구성된 옷감 모델의 사실적인 동작을 효율적으로 생성한다. 또한 계층적 기법은 옷감 모델에 사실적인 주름을 생성할 수 있도록 하며, 계층적 단계에 따라 스프링의 수축 저항을 제어할 수 있도록 하여 주름의 패턴도 쉽게 제어할 수 있도록 한다.

Keywords

References

  1. David Baraff and Andrew Witkin. Large steps in cloth simulation. Proceedings of SIGGRAPH 98, pp. 43-54, 1998
  2. M. Carignan, Y. Yang, N. M. Thalmann, and D. Thalmann, Dressing animated synthetic actors with complex deformable clothes. Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):99-104, July 1992 https://doi.org/10.1145/142920.134017
  3. G. Celniker and D. Gossard. Deformable curve and surface finite elements for free-form shape design. Computer Graphics (Proceedings of SIGGRAPH 91), 25(4):257-266, July 1991 https://doi.org/10.1145/127719.122746
  4. Y. Chen, Q. Zhu, and A. Kaufmann. Physically-based animation of volumetric objects. Computer Animation '98, pages 154-169, June 1998
  5. G. Debunne, M. Desbrun, A. Barr, and M.-P. Cani. Interactive multiresolution animation of deformable models. Computer Animation and Simulation '99, September 1999
  6. M. Desbrun, P. Schroder, and A. Barr. Interactive animation of structured deformable objects. Graphics Interface '99, pp. 1-8, 1999
  7. S. Gottschalk, M. Lin, and D. Manocha. OBB-tree: A hierarchical structure for rapid interference detection. Proceedings of SIGGRAPH '96, pages 171-180, August 1996
  8. S. Hadap, E. Bangarter, P. Volino, and N. Magnenat-Thalmann. Animating wrinkles on clothes. IEEE Visualization '99, pages 175-182, October 1999
  9. M. Kass. An Introducation to continuum dynamics for computer graphics. In SIGGRAPH Cource Note: Physically-based Modeling. ACM SIGGRAPH, 1995
  10. S. Nakamura. Initial value problems of ordinary differential equations. In Applied Numerical Methods with Software, pages 289-350. Prentice-Hall, 1991
  11. H. N. Ng and R. L. Grimsdale. Computer graphics techniques for modeling cloth. IEEE Computer Graphics& Applications, 16(5):28-41, September 1996
  12. H. Okabe, H. Imaoka, T. Tomiha, and H. Niwaya. Three dimensional apparel cad system. Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):105-110, July 1992 https://doi.org/10.1145/142920.134019
  13. J. Plath. Realistic modelling of textiles using interacting particle systems. Computers & Graphics, 24(6):897-905, December 2000 https://doi.org/10.1016/S0097-8493(00)00091-1
  14. X. Provot. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Graphics Interface '95, pages 147-154, May 1995
  15. X. Provot. Collision and self-collision handling in cloth model dedicated to design. Computer Animation and Simulation '97, pages 177-190, September 1997
  16. D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. Computer Graphics (Proceedings of SIGGRAPH 88), 22(4):269-278, August 1988 https://doi.org/10.1145/378456.378522
  17. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Computer Graphics (Proceedings of SIGGRAPH 87), 21(4):205-214, July 1987 https://doi.org/10.1145/37402.37427
  18. D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable components. IEEE Computer Graphics & Applications, 8(6):41-51, November 1988
  19. P. Volino, M. Courshesnes, and N. M. Thalmann. Versatile and efficient techniques for simulating cloth and other deformable objects. Proceedings of SIGGRAPH95, pages 137-144, August 1995
  20. P. Volino and N. M. Thalmann. Efficient self-collision detection on smoothly discretized surface animations using geometrical shape regularity. Computer Graphics Forum, 13(3):155-166, 1994
  21. A. Witkin and D. Baraff. Differential equation basics. In SIGGRAPH Course Note: Physically-based Modelling. ACM SIGGRAPH, 1994