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Design of LMS based adaptive equalizer using Discrete Multi-Wavelet Transform
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ABSTRACT

In the next generation mobile multimedia communications, the broad band short-burst transmissions are used to reduce end-to-end
transmission delay, and to limit the time variation of wireless channels over a burst. However, training overhead is very significant for such
short burst formats. So, the availability of the short training sequence and the fast converging adaptive algorithm is essential in the system
adopting the symbol-by-symbol adaptive equalizer. In this paper, we propose an adaptive equalizer using the DWMT (discrete multi-wavelet
transform) and LMS (least mean square) adaptation. The proposed equalizer has a faster convergence rate than that of the existing
transform-domain equalizers, while the increase of computational complexity is very small.
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I . Introduction transmitted signal will be distorted severely by the

time-varying multi-path fading channel [1], [2]. Therefore, a

A key issue toward next generation mobile multimedia desired system should be designed to reject the severe
communications is to create technologies for broadband inter-symbol interference (ISI) caused by multi-path
signal transmission that can support high quality services. In propagation and to be robust to time-varying fading, while
such a broadband mobile communications system, the providing high spectral efficiency and low power
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consumption.

In order to reduce the distortion due to ISI, the
symbol-by-symbol adaptive equalization device can be
considered. A good adaptive algorithm should attain the
properties of the fast converging performance and the low
complexity to achieve high spectral efficiency and the
robustness to fast time-varying fading. The recursive least
squares (RLS) type algorithms have been used commonly
since these algorithms can provide a fast converging
property. But, these algorithms require high computational
complexity and, as a consequence, the RLS based equalizer
consumes a large amount of the computational power at the
receiver. By contrast, the LMS algorithm has the low
computational complexity. But, when the LMS algorithm is
adopted, the convergence performance depends on the eigen
value spread of the input vector autocorrelation matrix. For
example, the convergence rate is very slow when the
channel characteristics result in an autocorrelation matrix
whose eigenvalues have a large spread. In order to speed up
the convergence rate, the transform domain LMS (TRLMS)
algorithms have been proposed. The existing TRLMS
algorithms are as follows; the discrete cosine transform
LMS (DCT-LMS), the discrete Fourier transform LMS
(DFT-LMS), the M-band discrete single-wavelet transform
LMS (DWT-LMS), and the combined TRLMS and
Gram-Schmidt orthogonalization algorithm [3]-[7]. These
TRLMS algorithms improve the convergence rate by
reducing the eigenvalue spread of the input autocorrelation
function with a small increase in computational load.

Recently, the discrete multi-wavelet transform (DMWT)
has been developed as the new chapter of wavelet theory.
While single wavelets use translates and dilates of one
mother wavelet function, multi-wavelets use translates and
dilates of more than one mother wavelet functions.
Multi-wavelets are known to have several advantages over
single wavelets such as orthogonality, symmetry, short
support and a high number of vanishing moments. DMWT
based applications have been introduced in several fields
such as image processing and signal compression [8]-[11].
So far DMWT based LMS filtering algorithm and its
performance have not been presented in the existing papers.

In this paper, the DMWT-LMS based adaptive equalization
is proposed, and the values of eigen value spreads are
estimated and compared for various algorithms. Throughout
the computer simulations, we show the converging
performance of the proposed DMWT-LMS based equalizer
with the different prefilters, and compare the performance of
proposed equalizer with that of conventional equalizers. The
complexity of DMWT-LMS algorithms the same as that of
DWT-LMS algorithm except the additional addition for the
preprocessing procedure.

This paper is organized as follows: In Section II , we
show the discrete multi-wavelet transformation, and
describe the proposed DMWT-LMS based adaptive
equalizer in Section III. Section IV shows the complexity of
the proposed scheme. In Section V, computer simulations
are executed and their results are discussed. Finally, in

Section V, concluding remarks are presented.

1I. Discrete multi-wavelet transform (DMWT)

While single wavelets (or scalar wavelets) need only one

scaling function, multi-wavelets (or vector wavelets) need r
scaling functions ®@=[4®):¢,(")] and r wavelet

functions YO ={w,@®), ., (D], where r>1. Multi-

wavelets satisfy the dilation and wavelet equations as follows:

®(1)=2) Clkyb (2t —k) o

¥() =25 DKW (2t~ ) o

where {CU0)}ociex s and (P ockexrare K x K filter
matrices and represent the low pass and high pass filter

parameters respectively. The scaling functions ¢; (t)and
associated wavelets 1, (t)are constructed so that all the
integer translations of ¢, (¢ )are orthogonal, and the integer

translations and dilations of factor 2 of );(¢)form an

orthonormal basis for L 2(R) .
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Fig. 1. DMWT using the uniform filterbank structure
28 1. uniform filterbank =& AF235H DMWT

Multi-wavelet transform is also based on the
multi-resolution (MRA) analysis as in the single wavelet
transform and so can be constructed by iterated filter banks
(see Fig. 1). A very important multi-wavelet system is GHM
(Geronimo, Hardin, and Massopust) multi-wavelet with
r=2, which was constructed by Geronimo, Hardin, and
Massopust [12]. This system consists of the low pass filter
C(¥) and the high pass filter D(k)with, respectively, four 2x2
matrices and K=4. The corresponding filter coefficients are
given by

3/10 0
3/10 2«/5/5} Cl:{ }

C(0)=
[—Jimo -3/20 92/40 1/2

con | © N I
(){9\/5/40 —3/20] V2740 0] @)

and

—2/4 — _
D) - J2/40 <3720 DOy = 9J2/40 —1/2
-1/20 -32/20 9/20 0

D(2)=[9J5/40 -3/20}1)(3){_\/5/40 o} .

—9/20 342720 1720 0

Due to the matrix property of multi-wavelet filter
coefficients, the multi-wavelet filter banks need 7 input
streams. Therefore, a method of mapping the one stream
input data to the multiple streams has to be developed. This
mapping process is called preprocessing and is done by a
prefilter Q. Fig. 1 depicts the DMWT using the uniform
filter bank followed a prefilter Qand one iteration. The
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existing prefilters are shown in [10]-[11]:
Xia nonorthogonal prefilter (called ‘Xia prefilter’) [10]

0.28867513 0.28867513 )]

~ [—0.0917517 0.9082483 J
Orthogonal prefilter satisfying S-F condition (called ‘SF
prefilter’) [11]

_[«/8/9 2\/3/9}

|=VB/9 4379 ®)

1. DMWT-LMS based adaptive equalization

First, consider a continuous time signal observed at the

output of a noisy communication channel

x(t) = iskh(t—kTs) +w(t) -

where {5¢} denote the transmitted symbols sequence
with the rate 1/Ts and Ts is the symbol duration. h(t) denotes
the continuous time channel having the finite support
t€[0,L, 7) and includes the Tx/Rx filter and multi-path
propagation. w(t) is additive noise that is assumed to be
stationary and uncorrelated with sy.

The corresponding fractionally spaced discrete time
model can be obtained either by sampling the signal
received on several sensors at the emission duration, by
over-sampling the signal received on a single receiver, or by
combining both techniques. Especially, in the application of
communications system, the fractionally spaced model can
mitigate the effect of the timing error. However, the perfect
timing recovery is assumed and so, for convenience, the
symbol-spaced discrete time model is considered here. x(t)
is sampled at t=nT and then the received data of the length N

can be represented in a matrix-vector form as
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x(n) = Hs(n) + w(n) (8)

where x(n) and w(n) are Nx1 vectors, H is the
N(N+ L) block Toeplitz Sylvester matrix and s(n) is
(V+ L, Y)x1 vector, and

x(n) =[x,(0), x,(),--,
s(n) = [ Spo1s”"5S -N-Lh_l]T (10)

w(n) =[wn),w(n-1),--,wn-N+D]"  qp

x,(N -1 ©)

RO RO - ALY O - 0
He ? h(0) A1) . h(L,) .0 9

(12)

The following throughout is assumed:
-input sequence {s,} is zero mean, and
E[sksl*]=6

impulse response.

(k—1!)where &(t)is the discrete-time

- noise v(t) is stationary with zero mean, white with

variance 03 , and uncorrelated with the input sequence

{Sk}-
x(n) 2]

Preprocessing for r input rows

vi(n ﬁ ] w0y v, () T

DMWT using multifilter banks

| ]
y°(nj£ y‘(n){ yz(n)f y”’l(n)f
Power normalization ‘

Wiy u'(n) R )

Equalizer output $(n)

Known symbol d(m)

LMS adaptation

Fig. 2. Block diagram of the DMWT-LMS based
adaptive equalizer
a8 2 DMWT-LMSZ(ute] M85357|e 22

A block diagram of a DMWT-LMS based adaptive
equalizer is depicted in Fig. 2 and the procedures are
classified into preprocessing for input rows, DMWT using
multi-filter banks, power normalization, and LMS
adaptation. The followings describe the procedure of
DMWT-LMS based adaptive equalizer in Fig. 2.

Preprocessing of input signal:

Let z,(i) =z(n—i). The received signal vector
x(n) of length N is preprocessed using prefilter Q to get
rows vector v(n) where x(n)=[x.(0), x,(1), ..., x,,(N—l)]T,
V)=[va0), ., valp-1)TT and vaD=[v1uD),.. , VD]
for [1=0..,p-1 and p=N/R. Note that r=2 for GHM
multi-wavelet. Note that the length N of the input signal
vector x(n) should be greater than rxK. For example,
because =2 and K=4 for GHM multi-wavelet, N is
greater than 8.

Multi-wavelet transform using multi-filter bank:

The transformed vector y(n) is given by multiplying
the orthogonal multi-wavelet transform matrix Ty to input
rows vector v(n), ie. x(n)=Tnv(n) where, for M-band
MRA, y(n)=D'(n),.., y* )" and y()=Deln),..., Yri()]
where the index j is the scale (the subband number, j=0,

, M-1, and R is the length of jth subband output
vector y’(n). The transform matrix Tncan be constructed
by double shifting NxN matrix as in DWT. For example,
if the GHM multi-wavelet and the input signal of length
8 are considered, then the transform matrix Tn for a 2
band multi-filter bank is given by

O C) CR) CB)
) B CO) c)
DO DI D) DE)
D(2) DG3) DO) DQ) 13

Ty =

Note that C(n) and D(n) are 2x2 matrices and so the
resulting matrix Ty is fourth times shifting 8x8 matrix.

Power normalization:

The ith clement w!(n) of the power-normalized
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output w(n) in j-th subband at n-th iteration can be
represented by

u.j(n)z yij(n)
i ((;‘+P;j(n) i:0,~',R—1’j=0,"',M—1

(14)

where pl(n) is the instantaneous power estimate of
v)(n) and € is a small constant that eliminate overflow
when the values of pi(n) are very small For
computing the values of p(n), the exponential

weighted method was used as follows:
B/ (n)=BF/ (m)+ (1= B)| ¥/ (m)’ (15)

where (3 is the forgetting factor between 0 and 1.

LMS adaptation:
The update equation of equalizer tap coefficient
g(n) is given by

g/ (n+1)=g{ (n)+ pu} (n)e’ (n) (16)

where pis the step size, and e(n)is the error signal
computed by

e(n) = d(n)=3(n) = d(n) - 3.3 g/ (W] (n) -

where d(m)is the known symbol and sA,l is the

equalizer output.

Iv. Complexity considerations

The increase in computational complexity of the
TRLMS algorithms mainly comes from the transform
processing as compared with the normalized LMS
(NLMS) algorithm. The DFT has a Of{nlog,V)
computational complexity and the DWT has a O{(mN)
computational complexity [3], where O(:) is used in
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describing the computational complexity of algorithm,
and M is the length of wavelet filter coefficients. The
complexity of DWT can be reduced from O(mN) to
O(mM) by using the redundancy-removal (RR)
technique [5]. Note that when N >>m >M | the RR
method practically the same computational complexity as
the TDLMS algorithm. Like a DWT, the DMWT has a
O(mM) computational complexity with an additional
addition for the preprocessing procedure where 7 is
the average length of filter coefficients. So, the
computational increase of DMWT-LMS based equalizer
is still very small compared with DWT-LMS based

equalizer.

V. Simulation and Results

A. Simulation Model

Two ISI channels, given in [1], are considered: one is
the minimum phase channel with the z-transform
H(2)=08440532"" and the other is the
non-minimum phase channel with the z-transform
H(2)=0.407+0.815z"" +0.407z"%. Total channel
impulse response includes the channel impulse response
h(t) and non-ideal pulse shaping filter using the square
root raised cosine filter with roll-off factor of 0.3 and
support [—37,27T,)
Note that the linear FIR equalizer was implemented for
hy(f) and the decision feedback equalizer (DFE) was
implemented for hx(?). The reason is that the linear FIR

where T; is symbol duration.

equalizer cannot cancel severe ISI channel A(f) under
the desired level [1]. The DFE consists of two filters, a
feedforward filter (FFF) and a feedback filter (FBF).
The input to the FFF is the received signal, while the
input to the FBF isthe sequence of decisions on
previously detected symbols. Functionally, the FBF is
used to remove that part of the ISI from the present
estimate caused by previously detected symbols. In this
way, ISI is eliminated without enhancement of noise
[1),2]. For DWT-LMS Dbased equalization, the
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Daubechies wavelet of length 4 (D4) was used and the
uniform filter bank structure with 4-band decomposition
was constructed. For DMWT-LMS based equalization,
the GHM multi-wavelet was used and the uniform
multi-filter bank without iteration was constructed. In
addition, the Xia and the SF prefilters were
constructed. The length of input signal is 8. A QPSK
signal was used and the SNR was 25dB. The length of
FFF is 8 and the length of FBF (only used to a DFE)
is 3. For a fair comparison, the normalized LMS
(NLMS) algorithm was also tested.

B. Simulation Results

In this section, the performance of the DMWT-LMS
based adaptive DFE with the different prefilters is
compared with the existing TDLMS and TRLMS based
DFEs via computer simulations.

The convergence behavior of the TRLMS based
equalizer based on approximating the autocorrelation
matrix of the transformed data as a diagonal matrixhas
been analyzed. However, it is noied that the residual
correlation varies depending on the characteristics of the
input data and on the transform used. The values of
eigenvalue spreads are estimated and compared for
various algorithms in Table 1 and Fig.3~4. As shownin
Fig 3 and 4, the TRLMS algorithms can reduce the
eigenvalue spreads, which depends on the transform
used. It is shown that the DMWT-LMS based equalizer
with the orthogonal SF prefilter can achieve the smallest
eigenvalues for both channels.
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Table 1 The comparisons of the values of eigen
value spreads for various algorithms
E 1. M2ct2 23e|Fof th$t eigen valueel bl

DWT-LMS | DMWT-LMS
2(R)| LM | NLMS |DFTAMS | (0" 2, ==
H(z)| 173 | 127 | 43 45 28 | 32
H,(z)| 6629 | 2401 | 58.1 434 | 441 (1504

Figs. 5 and 6 represent the comparisonsof convergence
rate for all algorithms in A;(f) and hu(f), respectively.
The curves are obtained by taking an ensemble average
of 100 statistically independent experiments. In Fig. 5,it
is shown that the DMWT-LMS based equalizer with the
Xia and SF prefilters yields the better performance than
that of the conventional equalizers in convergence rate.
In Fig. 6, it is shown that the DMWT-LMS based
with the SF prefilter yields the best
performance in convergence rate.

equalizer

) NUMs
(i) DFT-LMS
i) (iDDWT-LMS (D4;4 band)
() DMWT-LMS
i) (GHM with SF prefilter; no iteration) -
() DMWT-LMS
(GHM with Xia prefitter, no tteration) |

Ensemble averaged MSE
IR
5]

w ®

02534606603601013012;331;03181:018&2003
Iteration
Fig. 5 Convergence comparisons of various adaptive
algorithms at minimum phase channel h;(f)
a8 5 hd) oM gne|Eo wE
THMsH|
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Fig. 6 Convergence comparisons of various adaptive
algorithms at non-minimum phase channel A0
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VI. Conclusion

In this chapter, a DMWT-LMS based equalizeris
proposed to achieve the faster convergence speed. In the
proposed equalizer, the choice of the prefilter affects the
converging performance. Simulation results demonstrate
that the proposed equalizer with the SF prefilter has the
better converging performance than that of the
conventional equalizers for both minimum and
non-minimum phase channels. The computational
complexity of the DWT-LMS based equalizer has a very
small increase compared with that of the conventional
NLMSbased equalizer. In addition, the redundancy
removalmethod can further reduce the complexity of
DWT-LMS algorithm from O(mAN) to O(mM) . The
DMWT-LMS basedequalizer needs only the additional
computation of preprocessing procedure compared with
DWT-LMS, e.g. the N additions for the Xia prefilter.
Therefore the computational complexity of the new still

has a very small increase.

References

[1} J. G. Proakis, Digital Communication, 3rdedition,
MC Graw Hill, 1995.

606

[2] E. A. Lee, and D. G. Messerschmitt, Digital
Communication, 2ndedition, Kluwer Academic,
1994.

[3] F. Beaufays, “Transform-Domain Adaptive Filters:
An Analytical Approach,” IEEE Trans. Signal
Processing, Vol. 43, No. 2, pp. 422-431, Feb, 1995.

[4] N. J. Bershad and P. L. Feintuch, “A Normalized
Frequency Domain LMS Adaptive Algorithm,” IEEE

Trans. Acoust. Speech, Signal Processing, Vol.
ASSP-34, No. 3, pp. 452-461, June 1986.

[5] Samir Attallah, “The Wavelet Transform-Domain
LMS Algorithm: A More Practical Approach,” IEEE
Trans. Circuits and Systems-II: Analog and Digital
Signal Processing, Vol. 47, No. 3, March 2000.

[6] L. Feng and W. Xinmei, “Wavelet based decision
feedback equalizer,” IEE Electronics Letters, Vol.
33, No, 7, pp. 565-567, March 1997.

[7]1 V. N. Parikh, and A. Z. Baraniecki, “The Use of
the Modified Escalator Algorithm to Improve the
Performance of Transform-domain LMS Adaptive
Filters,” IEEE Tr. Signal Processing., Vol. 46, No.
2, pp. 625-635, 1998.

[8] V. Strela, P. N. Heller, G. Strang, P. Topiwala, and
C. Heil, "The Application of Multiwavelet
Filterbanks to Image Processing,” IEEE Transactions
on Image Processing, Vol. 8, No. 4, pp. 548-563,
April 1999.

91 T. D. Bui and G. Chen, "Translate-Invariant
Denoising Using Multiwavelets,” IEEE Trans. Signal
Processing, Vol. 46, No. 12, pp. 3414-3420, Dec.
1998.

[10] X. G. Xia, "A New Prefilter Design for Discrete
Multiwavelet Transforms,” IEEE Trans. Signal
Processing, Vol. 46, No. 6, pp. 1558-1570, June

1998.

[11] Y. Xinxing, J. Licheng, and Z. Jiankang, “Design
of orthogonal prefilter with the Strang-Fix
condition,” IEE Electronics Letters, Vol. 35, No. 2,
pp. 117-119, Jan. 1999.

[12] J. S. Geronimo, D. P. Hardin, and P. R.

“Fractal

expansions based on several scaling functions,” J.

Approx. Theory, Vol. 78, pp. 373-401, 1994.

Massopust, functions and wavelet



Discrete Multi-Wavelet ¥ 318 o] &3 LMS7] 8t &

XA

z 8 M(Yun Seok Choi)

19973 24 wediga
4

19993 8¢9 =gt Wz} 35t
A AL

2004'A 29 - we Ul gL AzF &} gk}

2004939 ~F A A AR AR ZANFZ U EIA}

(2

A

ol

st}

g Agate
¥ TRk TIAY B4 A 2H, o R

b d Z(Hyung-Kun Park)

1095 28 312 o) 2kt A3 5}
(3D

19973 29 & o 8t AR-F &

! (FEHAD

20003 8 w2 o & A A-F 83} (FEHerAL

20003 9-€~20013 8Y: University of Colorado at
Colorado Springs, Postdoc.

2001 99~2004'3 2¥: YA ~F, AL AT

2004 39~A A FR7| S WS W H I EF
ZuF

HAHEoF: 44 o] 554, OFDM, F-A A+

BLJ

=]
-

Z

o

607



