COMMON FIXED POINT FOR WEAK COMPATIBLE MAPPINGS OF TYPE (α) IN MENGER SPACES

SUSHIL SHARMA AND AMARDEEP SINGH

ABSTRACT. In this paper we prove common fixed point theorem for four mappings, under the condition of compatible mappings of type (α) in Menger space, without taking any function continuous. We improve results of Pathak, Kang and Baek [13] and Cho, Murthy and Stojakovic [37].

1. Introduction

The notion of probabilistic metric space was introduced by Menger [14] which is generalization of metric space, and the study of these spaces was expanded rapidly with the pioneering works of Schweizer and Sklar [5,6]. The theory of probabilistic metric spaces is of fundamental importance in probabilistic function analysis.

For the detailed discussions of these spaces and their applications, we refer to [1,3,10,11,12,19,21] and [25]. Fixed point theorems in probabilistic metric spaces have been proved by many authors including Bharucha-Reid [2], Boscon [7], Chang [27], Ciric [16], Hadzic [22,23,24], Hicks [33], Singh and Pant [28,29,30], Stojakovic [17,18,19], Tan [30] and many others ([4,8,15,26,31] and [33]).

Fixed point theorems in Menger spaces have been proved by many authors including Cho, Murthy and Stojakovic [37], Dedeic and Sarapa...
Many authors have shown that the papers involving contractive definition that do not require continuity of the function.

Sessa [32] defined weak commutativity and proved common fixed point theorem for weakly commuting mappings. Further Jungck [9] introduced more generalized commutativity, so called compatibility, which is more general than that of weak commutativity. Since then various fixed point theorems for compatible mappings satisfying contractive type conditions and assuming continuity of at least one of the mappings, have been obtained by many authors.

In this paper we improve results of Cho, Murthy and Stojakovic [37] and Pathak, Kang and Baek [13].

2. Preliminaries

Let R denote the set of reals and R^+ the non-negative reals. A mapping $F : R \to R^+$ is called a distribution function if it is non-decreasing left continuous with $\inf F = 0$ and $\sup F = 1$. We will denote by L the set of all distribution functions.

A probabilistic metric space is a pair (X, F), where X is a non-empty set and F is a mapping from $X \times X$ to L.

For $(u,v) \in X \times X$, the distribution function $F(u,v)$ is denoted by $F_{u,v}$. The functions $F_{u,v}$ are assumed to satisfy the following conditions:

(P_1) $F_{u,v}(x) = 1$ for every $x > 0$ if and only if $u = v$,

(P_2) $F_{u,v}(0) = 0$ for every $u,v \in X$,

(P_3) $F_{u,v}(x) = F_{v,u}(x)$ for every $u,v \in X$,

(P_4) If $F_{u,v}(x) = 1$ and $F_{v,w}(y) = 1$, then $F_{u,w}(x+y) = 1$ for every $u,v,w \in X$.

In a metric space (X,d), the metric d induces a mapping $F : X \times X \to L$ such that $F(u,v)(x) = F_{u,v}(x) = H(x - d(u,v))$ for every $u,v \in X$ and $x \in R$, where H is a distribution function defined by
H(x) = \begin{cases} 0, & x \leq 0 \\ 1, & x > 0 \end{cases}

A function t : [0,1] × [0,1] → [0,1] is called T-norm if it satisfies the following conditions:

(t₁) t(a,1) = a for every a ∈ [0,1] and t(0,0) = 0,
(t₂) t(a,b) = t(b,a) for every a,b ∈ [0,1],
(t₃) if a ≤ c and b ≤ d, then t(a,b) ≤ t(c,d),
(t₄) t(t(a,b),c) = t(a,t(b,c)) for every a,b,c ∈ [0,1].

A Menger space is a triple (X,F,t), where (X,F) is a PM-space and t is a T-norm with the following condition:

(P₅) F_{u,w}(x + y) ≥ t(F_{u,v}(x), F_{v,w}(y)) for every u,v,w ∈ X and x,y ∈ R⁺.

The concept of neighborhoods in PM-spaces was introduced by Schweizer and Sklar [5]. If u ∈ X, ε > 0 and λ ∈ (0,1), then an (ε,λ)-neighborhood of u, denoted by U_u(ε,λ), is defined by

U_u(ε,λ) = \{ v ∈ X : F_{u,v}(ε) > 1-λ \}.

If (X,F,t) is a Menger space with the continuous T-norm t, then the family

\{ U_u(ε,λ) : u ∈ X, ε > 0, λ ∈ (0,1) \}

of neighborhoods induces a Hausdorff topology on X and if sup t(a,a) = 1, a < 1, it is metrizable.

An important T-norm is the T-norm t(a,b) = min\{a,b\} for all a,b ∈ [0,1] and this is the unique T-norm such that t(a,a) ≥ a for every a ∈ [0,1]. Indeed, if it satisfies the condition, we have

\[\min\{a, b\} \leq t(\min\{a, b\}, \min\{a, b\}) \leq t(a, b) \leq t(\min\{a, b\}, 1) = \min\{a, b\}. \]

Therefore, t = min.

In the sequel, we need the following definitions due to Radu [35].

Definition 2.1. Let (X,F,t) be a Menger space with continuous T-norm t. A sequence \{p_n\} in X is said to be convergent to a point p ∈ X if for every ε > 0 and λ > 0, there exists an integer N = N(ε,λ) such that p_n ∈ U_p(ε,λ) for all n ≥ N, or equivalently, F_{p,p_n}(ε) > 1-λ for all n ≥ N. We write p_n → p as n → ∞ or lim_{n→∞} p_n = p.
Definition 2.2. Let \((X,F,t)\) be a Menger space with continuous T-norm \(t\). Then \(F\) is a lower semi-continuous function of points in \(X\), that is, for any fixed \(x \in \mathbb{R}^+\), if \(q_n \to q\) and \(p_n \to p\) as \(n \to \infty\), then
\[
\lim_{n \to \infty} \inf F_{p_n,q_n}(x) = F_{p,q}(x).
\]

Definition 2.3. Let \((X,F,t)\) be a Menger space with continuous T-norm \(t\). A sequence \(\{p_n\}\) of points in \(X\) is said to be Cauchy sequence if for every \(\epsilon > 0\) and \(\lambda > 0\), there exists an integer \(N = N(\epsilon,\lambda) > 0\) such that \(F_{p_n,p_m}(\epsilon) > 1 - \lambda\) for all \(m,n \geq N\).

Definition 2.4. A Menger space \((X,F,t)\) with the continuous T-norm \(t\) is said to be complete if every Cauchy sequence in \(X\) converges to a point in \(X\).

Lemma 2.1. [6],[29] Let \(\{x_n\}\) be a sequence in a Menger space \((X,F,t)\), where \(t\) is a continuous T-norm and \(t(x,x) \geq x\) for all \(x \in [0,1]\). If there exists a constant \(k \in (0,1)\) such that \(F_{x_n,x_{n+1}}(kx) \geq F_{x_{n-1},x_n}(x)\), for all \(x > 0\) and \(n \in \mathbb{N}\), then \(\{x_n\}\) is a Cauchy sequence in \(X\).

The following theorems establish the relations between metric spaces and Menger spaces. It is well known that every metric space \((X,d)\) is a Menger space \((X,F,\min)\), where the mapping \(F_{x,y}\) is defined by \(F_{x,y}(\epsilon) = H(\epsilon - d(x,y))\). The space \((X,F,\min)\) is called the induced Menger space.

Theorem 2.1. Let \(t\) be a T-norm defined by \(t(a,b) = \min \{a,b\}\). Then the induced Menger space \((X,F,t)\) is complete if a metric space \((X,d)\) is complete.

Definition 2.5. [13] Let \((X,F,t)\) be a Menger space such that the T-Norm \(t\) is continuous and \(S, T\) be mappings form \(X\) into itself. \(S\) and \(T\) are said to be weak compatible of type \((\alpha)\) if
\[
\lim_{n \to \infty} F_{STx_n,TTx_n}(x) \geq F_{TSx_n,TTx_n}(x)
\]
and
\[
\lim_{n \to \infty} F_{TSx_n,SSx_n}(x) \geq F_{STx_n,SSx_n}(x)
\]
for all \(x > 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that.
lim_{n \to \infty} Sx_n = lim_{n \to \infty} Tx_n = z \text{ for some } z \in X.

Proposition 2.1: Let \((X, F, t)\) be a Menger space such that the T-norm \(t\) is continuous and \(t(x, x) \geq t\) for all \(x \in [0,1]\) and \(S, T : X \to X\) be mappings. If \(S\) and \(T\) are weak compatible of type \((\alpha)\) and \(Sz = Tz\) for some \(z \in X\), then \(SSz = STz = TSz = TTz\).

Proof: Suppose that \(\{x_n\}\) is a sequence in \(X\) defined by \(x_n = z\), \(n = 1, 2\), for some \(z \in X\) and \(Sz = Tz\). Then we have \(Sx_n, Tx_n = Sz\) as \(n \to \infty\). Since \(S\) and \(T\) are weak compatible of type \((\alpha)\), for every \(\epsilon > 0\),

\[
F_{STz, TTz}(\epsilon) = \lim_{n \to \infty} F_{STx_n, TTx_n}(\epsilon) \\
\geq F_{TSx_n, TTx_n}(\epsilon) = F_{TSz, TTz}(\epsilon) = 1
\]

Hence, we have \(STz = TTz\). Therefore, we have \(STz = SSz = TTz = TSz\). This completes the proof.

3. Common fixed point theorem

Theorem 3.1: Let \((X, F, t)\) be a complete Menger space with \(t(x, y) = \min\{x, y\}\) for all \(x, y \in [0,1]\) and \(A, B, S\) and \(T\) be mappings from \(X\) into itself such that,

1. \(A(X) \subset T(X)\) and \(B(X) \subset S(X)\),
2. the pairs \(\{A, S\}\) and \(\{B, T\}\) are weak compatible of type \((\alpha)\),
3. \([F_{Au, Bv}(kx)]^2 = \min\{[F_{Su, Tv}(x)]^2, F_{Su, Au}(x)F_{Tv, Bv}(x), F_{Su, Tv}(x)F_{Su, Au}(x), F_{Su, Bv}(2x)F_{Tv, Au}(x), F_{Su, Au}(x)F_{Tv, Au}(x), F_{Su, Bv}(2x)F_{Tv, Bv}(x)\}\),

for all \(u, v \in X\) and \(x \geq 0\), where \(k \in (0, 1)\).

Then \(A, B, S\) and \(T\) have a unique common fixed point in \(X\).

Proof: by (3.1), since \(A(X) \subset T(X)\), so for any arbitrary \(x_0 \in X\), there exists a point \(x_1 \in X\) such that \(Ax_0 = Tx_1\). Since \(B(X) \subset S(X)\), for this point \(x_1\) we can choose a point \(x_2 \in X\) such that \(Bx_1 = Sx_2\) and so on. Inductively, we can define a sequence \(\{y_n\}\) in \(X\) such that,

\[
y_{2n} = Tx_{2n+1} = Ax_{2n} \text{ and }
\]
\[y_{2n+1} = Sx_{2n+2} = Bx_{2n+1} \text{ for } n = 0, 1, 2, \ldots, \]

Now we shall prove \(F_{y_{2n}, y_{2n+1}}(kx) \geq F_{y_{2n-1}, y_{2n}}(x) \) for all \(x \) > 0, where \(k \in (0, 1) \). Suppose that \(F_{y_{2n}, y_{2n+1}}(kx) < F_{y_{2n-1}, y_{2n}}(x) \). Then by using (3.3) and \(F_{y_{2n}, y_{2n+1}}(kx) \leq F_{y_{2n-1}, y_{2n+1}}(x) \), we have

\[
[F_{y_{2n}, y_{2n+1}}(kx)]^2 = [F_{Ax_{2n}, Bx_{2n+1}(kx)}] ^2
\geq \min \{ [F_{Sx_{2n}, Tx_{2n+1}(x)}]^2, F_{Sx_{2n}, Ax_{2n}(x)} \cdot Ft_{x_{2n+1}}, Bx_{2n+1}(x) F_{Sx_{2n}, Tx_{2n+1}(x)}, F_{Sx_{2n}, Bx_{2n+1}(2x)}, F_{Sx_{2n}, Tx_{2n+1}(x)}, F_{Sx_{2n}, Bx_{2n+1}(2x)}, F_{Sx_{2n}, Bx_{2n+1}(2x)}, Bx_{2n+1}(2x) \cdot Ft_{x_{2n+1}}, Bx_{2n+1}(x) \}
\]

\[
= \min \{ [F_{y_{2n-1}, y_{2n}}(x)]^2, F_{y_{2n-1}, y_{2n}(x)} \cdot F_{y_{2n}, y_{2n+1}(x)}, F_{y_{2n-1}, y_{2n}(x)} \cdot F_{y_{2n}, y_{2n+1}(x)}, F_{y_{2n-1}, y_{2n}(x)} \cdot F_{y_{2n}, y_{2n+1}(x)} \}
\]

\[
\geq \min \{ [F_{y_{2n-1}, y_{2n}}(x)]^2, F_{y_{2n-1}, y_{2n}}(x) \cdot F_{y_{2n}, y_{2n+1}(x)} \}
\]

\[
\begin{align*}
\geq & \min \{ [F_{y_{2n-1}, y_{2n}}(x)]^2, F_{y_{2n-1}, y_{2n}}(x) \cdot F_{y_{2n}, y_{2n+1}}(x) \} \\
& > \min \{ [F_{y_{2n}, y_{2n+1}(kx)}]^2, [F_{y_{2n}, y_{2n+1}(kx)}]^2, [F_{y_{2n}, y_{2n+1}(kx)}]^2, [F_{y_{2n}, y_{2n+1}(kx)}]^2 \}
\end{align*}
\]

which is a contradiction. Thus, we have

\[
F_{y_{2n}, y_{2n+1}(kx)} \geq F_{y_{2n-1}, y_{2n}}(x).
\]
Similarly, we have also $F_{y_{2n+1}, y_{2n+2}}(kx) \geq F_{y_{2n}, y_{2n+1}}(x)$. Therefore, for every $n \in \mathbb{N}$, $F_{y_{n}, y_{n+1}}(kx) \geq F_{y_{n-1}, y_{n}}(x)$. Therefore by lemma 2.1, $\{y_{n}\}$ is a Cauchy sequence in X.

Since the Menger space (X, F, t) is complete, therefore sequence $\{y_{n}\}$ converges to a point z in X and the sub-sequences $\{Ax_{2n}\}$, $\{Bx_{2n+1}\}$, $\{Sx_{2n}\}$ and $\{Tx_{2n+1}\}$ of $\{y_{n}\}$ also converge to z.

Since $B(X) \subset S(X)$, there exists $q \in X$ such that $z = Sq$. Then using (3.3) we have
\[
[F_{Aq, Bx_{2n-1}}(kx)]^2 = \min \{[F_{Sq, Tx_{2n-1}}(x)]^2, F_{Sq, Aq}(x), F_{z, z}(x), F_{z, z}(2x), F_{z, Aq}(x)\}
\]

Again using (3.3), we have $\{F_{z, z}(x)\} = \min \{[F_{z, z}(x)]^2, F_{z, z}(x), F_{z, z}(2x), F_{z, Aq}(x)\}$ which is a contradiction, thus we have $z = Aq = Sq$.

Since $A(X) \subset T(X)$, there exists a point $p \in X$ such that $z = Tp$. Again using (3.3), we have
\[
[F_{Aq, Bp}(kx)]^2 \geq \min \{[F_{Sq, Tp}(x)]^2, F_{Sq, Aq}(x) \cdot F_{Tp, Bp}(x), F_{Sq, Aq}(x) \cdot F_{Tp, Bp}(x)\}
\]

Therefore, for every $n \in \mathbb{N}$, $F_{y_{n}, y_{n+1}}(kx) \geq F_{y_{n-1}, y_{n}}(x)$. Therefore by lemma 2.1, $\{y_{n}\}$ is a Cauchy sequence in X.
which implies that \(z = Bp \). Therefore \(z = Bp = Tp = Sq = Aq \). Since the pair of maps \(A \) and \(S \) are weakly compatible of type \((\alpha)\) i.e \(Az = Sz \).

Now we show that \(z \) is a common fixed point of \(A \). If \(Az \neq z \), then by (3.3)
\[
[F_{Az,z}(kx)]^2 \geq \min \{ [F_{Sz,Tp}(x)]^2, F_{Sz,Az}(x) \cdot F_{Tp,Bp}(x), F_{Sz,Tp}(x) \cdot F_{Sz,Az}(x), F_{Tp,Bp}(x), F_{Sz,Tp}(x) \cdot F_{Sz,Bp}(2x), F_{Sz,Tp}(x) \cdot F_{Tp,Az}(x) \}
\]
\[
=F_{Az,z}(x) \cdot F_{Az,z}(2x).
\]
which is a contradiction. Thus we have \(Az = z \). Hence \(z = Az = Sz \).

Similarly, pair of maps \(B \) and \(T \) are weakly compatible of type \((\alpha)\), we have \(Bz = Tz \) Again by (3.3), we have
\[
[F_{z,Bz}(kx)]^2 \geq \min \{ [F_{z,Bz}(x)]^2, F_{z,z}(x) \cdot F_{z,Bz}(x), F_{z,Bz}(x) \cdot F_{z,Bz}(2x), F_{z,Bz}(x), F_{z,Bz}(2x) \cdot F_{z,z}(x), F_{z,Bz}(2x) \cdot F_{z,Bz}(x) \}
\]
\[
=F_{z,Bz}(x).
\]
Therefore, \(z = Bz = Tz = Az = Sz \), and \(z \) is a common fixed point of \(A,B,S \) and \(T \).

Finally, in order to prove the uniqueness of \(z \), suppose that \(z \) and \(w \), \((z \neq w) \), are two common fixed points of \(A,B,S \) and \(T \). Then by (3.3), we obtain.
\[
[F_{z,w}(kx)]^2 \geq \min \{ [F_{z,w}(x)]^2, F_{z,z}(x), F_{w,w}(x), F_{z,w}(x) \cdot F_{z,z}(x), F_{z,w}(x) \cdot F_{w,w}(x), F_{z,w}(2x) \cdot F_{w,z}(x), F_{z,z}(x) \cdot F_{w,z}(x), F_{z,w}(2x) \cdot F_{w,z}(x), F_{z,w}(x) \}
\]

which is a contradiction therefore \(z = w \). This completes the proof of the theorem.

REFERENCES

[34] V. Radu, On t-norm of the Hadzic type and fixed points in probabilistic metric, spaces. Review of Research, Prirodno-matematičkog Fakulteta Novi Sad 13(1983), 81-85

Sushil Sharma
Department of Mathematics,
Madhav Science College,
Ujjain, India

Amardeep Singh
Department of Mathematics, Govt.
Motilal Vidyamahavidyalaya,
Bhopal, India