Controlling Linkage Disequilibrium in Association Tests: Revisiting APOE Association in Alzheimer's Disease

  • Park, Lee-Young (Genomic Epidemiology Division, Center for Genome Science, National Institute of Health, KCDC)
  • Published : 2007.06.30

Abstract

The allele frequencies of markers as well as linkage disequilibrium (LD) can be changed in cases due to the LD between markers and the disease allele, exhibiting spurious associations of markers. To identify the true association, classical statistical tests for dealing with confounders have been applied to draw a conclusion as to whether the association of variants comes from LD with the known disease allele. However, a more direct test considering LD using estimated haplotype frequencies may be more efficient. The null hypothesis is that the different allele frequencies of a variant between cases and controls come solely from the increased disease allele frequency and the LD relationship with the disease allele. The haplotype frequencies of controls are estimated using the expectation maximization (EM) algorithm from the genotype data. The estimated frequencies are applied to calculate the expected haplotype frequencies in cases corresponding to the increase or decrease of the causative or protective alleles. The suggested method was applied to previously published data, and several APOE variants showed association with Alzheimer's disease independent from the APOE ${\varepsilon}4$ variant, rs429358, regardless of LD showing significant simulated p-values. The test results support the possibility that there may be more than one common disease variant in a locus.

Keywords

References

  1. Altshuler, D., Brooks, L. D., Chakravarti, A., Collins, F. S., Daly, M. J., and Donnelly P. (2005). A haplotype map of the human genome. Nature 437, 1299-1320 https://doi.org/10.1038/nature04226
  2. Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299-309 https://doi.org/10.1038/nrg777
  3. Artiga, M. J., Bullido, M. J., Frank, A., Sastre, I., Recuero, M., Garcia, M. A., Lendon, C. L., Han, S. W., Morris, J. C., Vazquez, J., Goate, A., and Valdivieso, F. (1998). Risk for Alzheimer's disease correlates with transcriptional activity of the APOE gene. Hum. Mol. Genet. 7, 1887-1892 https://doi.org/10.1093/hmg/7.12.1887
  4. Bullido, M. J., Artiga, M. J., Recuero, M., Sastre, I., Garcia, M. A., Aldudo, J., Lendon, C., Han, S. W., Morris, J. C., Frank, A., Vazquez, J., Goate, A., and Valdivieso, F. (1998). A polymorphism in the regulatory region of APOE associated with risk for Alzheimer's dementia. Nat. Genet. 18, 69-71 https://doi.org/10.1038/ng0198-69
  5. Chapman, J. M., Cooper, J. D., Todd, J. A., and Clayton, D. G. (2003). Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Hered. 56, 18-31 https://doi.org/10.1159/000073729
  6. de Bakker, P. I., Yelensky, R., Pe'er, I., Gabriel, S. B., Daly, M. J., and Altshuler, D. (2005). Efficiency and power in genetic association studies. Nat. Genet. 37, 1217-1223 https://doi.org/10.1038/ng1669
  7. de Knijff, P., van den Maagdenberg, A. M., Frants, R. R., and Havekes, L. M. (1994). Genetic heterogeneity of apolipoprotein E and its influence on plasma lipid and lipoprotein levels. Hum. Mutat. 4, 178-194 https://doi.org/10.1002/humu.1380040303
  8. De La Vega, F. M., Gordon, D., Su, X., Scafe, C., Isaac, H., Gilbert, D. A., and Spier, E. G. (2005). Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum. Hered. 60, 43-60 https://doi.org/10.1159/000087918
  9. Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., Myers, R. H., Pericak-Vance, M. A., Risch, N., and van Duijn, C. M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Jama. 278, 1349-1356 https://doi.org/10.1001/jama.278.16.1349
  10. Gordon, D., Finch, S. J., Nothnagel, M., and Ott, J. (2002). Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum. Hered. 54, 22-33 https://doi.org/10.1159/000066696
  11. Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J., Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A., Dudbridge, F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C., Clayton, D. G., and Todd, J. A. (2001). Haplotype tagging for the identification of common disease genes. Nat. Genet. 29, 233-237 https://doi.org/10.1038/ng1001-233
  12. Kamboh, M. I., Aston, C. E., Perez-Tur, J., Kokmen, E., Ferrell, R. E., Hardy, J., and DeKosky, S. T. (1999). A novel mutation in the apolipoprotein E gene (APOE*4 Pittsburgh) is associated with the risk of late-onset Alzheimer's disease. Neurosci. Lett. 263, 129-132 https://doi.org/10.1016/S0304-3940(99)00129-9
  13. Laws, S. M., Hone, E., Taddei, K., Harper, C., Dean, B., McClean, C., Masters, C., Lautenschlager, N., Gandy, S. E., and Martins, R. N. (2002). Variation at the APOE -491 promoter locus is associated with altered brain levels of apolipoprotein E. Mol. Psychiatry. 7, 886-890 https://doi.org/10.1038/sj.mp.4001097
  14. Nickerson, D. A., Taylor, S. L., Fullerton, S. M., Weiss, K. M., Clark, A. G., Stengard, J. H., Salomaa, V., Boerwinkle, E., and Sing, C. F. (2000). Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 10, 1532-1545 https://doi.org/10.1101/gr.146900
  15. Nicodemus, K. K., Stenger, J. E., Schmechel, D. E., Welsh-Bohmer, K. A., Saunders, A. M., Roses, A. D., Gilbert, J. R., Vance, J. M., Haines, J. L., Pericak-Vance, M. A., and Martin, E. R. (2004). Comprehensive association analysis of APOE regulatory region polymorphisms in Alzheimer disease. Neurogenetics 5, 201-208 https://doi.org/10.1007/s10048-004-0189-9
  16. Ramos, M. C., Matias, S., Artiga, M. J., Pozueta, J., Sastre, I., Valdivieso, F., and Bullido, M. J. (2005). Neuronal specific regulatory elements in apolipoprotein E gene proximal promoter. Neuroreport 16, 1027-1030 https://doi.org/10.1097/00001756-200506210-00029
  17. Weiss, K. M. and Clark, A. G. (2002). Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18, 19-24 https://doi.org/10.1016/S0168-9525(01)02550-1