DOI QR코드

DOI QR Code

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds

인계화합물을 포함한 재활용 폴리우레탄폼의 난연성

  • Published : 2007.06.30

Abstract

Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.

References

  1. G. L. Nelsion, 'Fire and Polymers', American Chemical Society, Washington, DC.(1990)
  2. M. Lewis, S. M. Altas, and E. M. Pearce, 'Flame-Retardant Polymer Materials', Plenum Press, New York(1975)
  3. M. L. Hardy, Polym. Degrad. Stab., 64, 545 (1999) https://doi.org/10.1016/S0141-3910(98)00141-4
  4. Y. Tanaka, 'Epoxy Resin Chemistry and Technology', Marcel Dekker, New York(1988)
  5. A. Fina, H. C. L. Abbenhuis, D. Tabuani, and G. Camino, Polym. Degrad. Stab., 91, 2275 (2006) https://doi.org/10.1016/j.polymdegradstab.2006.04.014
  6. A. P. Mouritz, Z. Mathys, and A. G. Gibson, Composites: Parts A, 37, 1040 (2006) https://doi.org/10.1016/j.compositesa.2005.01.030
  7. Y. -K. Kong, D. -H. Lee, T. of Korean Institute of Fire Sci. & Eng. 17(4), 117 (2003)
  8. G. Gallina, E. Bravin, C. Badalucco, G. Audisio, M. Armanini, and A. De Chirico, Fire Mater., 2, 15 (1998)
  9. U. Sorathia, G. Long, T. Gracik, M. Blum, and J. Ness, Fire Maier., 25, 215 (2001) https://doi.org/10.1002/fam.771
  10. Y. Tang, Y. Hu, L. Song, R. Zong, Z. Gui, and W. Fan, Polym. Degrad. Stab., 91, 234 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.05.016
  11. S. Girud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Deobel, and F. Poutch, Polym. Degrad. Stab., 88, 106 (2005) https://doi.org/10.1016/j.polymdegradstab.2004.01.028
  12. E. Weigand and W. Rabhofer, 'Recycling of Polyurethanes', pp. 3-12, Technomic Publishing Company. Inc., USA(1995)
  13. C. -R. Park, Y. -C. Kim, and N. -K. Park, J. Korean Ind. Eng. Chem., 11(1), 105 (2000)
  14. K. Troev, G, Grandcharov, and R. Tesevi, Polym. Degrad. Stab., 70, 43 (2000) https://doi.org/10.1016/S0141-3910(00)00086-0
  15. K. Troev, G, Grandcharov, and R. Tesevi, J. Appl. Polym. Sci., 78(4), 2565 (2000) https://doi.org/10.1002/1097-4628(20001227)78:14<2565::AID-APP180>3.0.CO;2-H
  16. K. Troev, G, Grandcharov, R. Tesivi, A. Tsekova, and A Novel, Polymer, 41, 7017 (2000) https://doi.org/10.1016/S0032-3861(00)00054-9
  17. ISO 5660-1, Reaction to Fire Tests-Heat Release, Smoke Productoon and Mass Loss Rate, Genever(2002)
  18. M. Hirschler, 'Thermal Decomposition and Chemical Composition', pp. 239-300, American Chemical Sciety Symposium Series 797 (2001)
  19. A. Ravve, 'Principles of Polymer Chemistry', Plenum Press, New York(1995)
  20. R. V. Petrella, J. of Fire Sciences, 12, 14 (1994) https://doi.org/10.1177/073490419401200102