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Statistically Proper Multiple Range Tests for a Within
Subject Factor in a Repeated Measures Design
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Abstract

It is a common practice in many research areas that multiple range
tests for a between subject factor such as Tukey are applied to a within
subject factor in a repeated measures design. Tukey procedure, however,
sometimes detects no pairs with different means even when the
hypothesis of all equal level means is rejected. This study attempts to
provide a rationale for the proposition that Tukey is inappropriate post
hoc procedure for a within subject factor in which the observations are
correlated. We introduce two multiple range tests, Bonferroni and Scheffe,
for a within subject factor and show that Bonferroni is more appropriate
than Scheffe for pairwise multiple comparisons. Subsequent simulation
study indicates that Tukey has significantly less power than Bonferroni in
detecting actual difference between means of some pairs when the
observations of a within subject factor are highly correlated.

Keywords : Bonferroni Procedure, Multiple Range Test, Repeated
Measures Design, Tukey Procedure

1. Introduction

In many research areas, statistical methodologies are employed as a tool to
provide an objective evidence for statistical hypotheses. However, some statistical
methodologies are not easy to understand and are too complicated to apply in
practice. Accordingly, researchers tend to apply easy-to-use alternatives to a
situation where they might not be statistically correct. For example, while
multivariate ANOVA (analysis of variance) is appropriate for testing equality of
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mean vectors, it is based on a complicated matrix algebra and does not lead to a
unique procedure for the test (see sections 84 and 86 of Anderson (1984) for
details). Consequently, a sequence of univariate ANOVA is often used for testing
equality of mean values of each component since it is quite familar to most
researchers and provides a unique F-test.

Multiple range tests for within subject factors in a repeated measures design
provide another example of such applications. Since there has not been much
study on post-hoc test procedures for within subject factors, multiple range tests
developed for a between subject factor such as Tukey are often applied to a
within subject factor. For example, in a study on the coupling of eye, finger,
elbow, and shoulder movements during aiming task, Helsen et al. (2000) analyzed
the effect of limb component (finger, elbow, or shoulder) on various dependent
variables using ANOVA with repeated measures and Tukey’s HSD post hoc
procedure. Weir et al. (1998) also used Tukey’s HSD as post hoc test for a
significant within subject factor. Examples like this can be easily found in studies
employing repeated measures design (see Barthelemy and Boulinguez (2002),
Harvey et al. (2002), and Teixeira (2000) among others).

If Tukey procedure is applied to a significant within subject factor, however, it
sometimes detects no pairs with different means even when the hypothesis of all
equal level means is rejected. In other words, the sensitivity of Tukey to actual
difference between level means decreases when sample means are (positively)
correlated. In a repeated measures design, the observations of a within subject
factor are usually (positively) correlated because they are measured from the same
subject. Therefore, application of Tukey or other post hoc test procedures for
between subject factors to a significant within subject factor may lead to an
incorrect interpretation of the result.

In this paper, we attempt to provide a rationale for our proposition that Tukey
is Inappropriate post hoc procedure for a within subject factor in which the
observations are correlated. First, we introduce two multiple range test procedures,
Bonferroni and Scheffe, for a within subject factor, which are statistically correct
and easy to use. We propose to use Bonferroni for pairwise comparisons, e.g.
comparison between level 1 and level 2, and Scheffe for contrasts, e.g. comparison
between the average of levels 1 and 2, and level 3. Since we are interested in
pairwise multiple comparisons for a significant within subject factor with more
than three levels, Bonferroni seems to be better than Scheffe and we provide a
numerical evidence for it.

Although not being optimal, we suggest to use Bonferroni for pairwise multiple
comparisons because it is quite easy to use in practice. To improve the power for
detecting actual difference between means of some pairs, a stepwise procedure
called the false discovery rate criterion, suggested by Benjamini and Hochberg
(1995) and later developed by Benjamini and Liu (1999) for generally correlated
test statistics, might be employed. However, this procedure is not considered in
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this study since it is not for the family of all possible pairs.

Next, we provide empirical evidence based on a simulation study as well as
theoretical justification for a better performance of Bonferroni than Tukey in
detecting pairs with different means. Although our comparison uses Tukey as a
competitor, the same story holds for other methods for a between subject factor.
Tukey has been a natural competitor since it is a well known multiple comparison
method for comparing all possible pairs (see p. 574 of Neter et al. (1985) for
details). We show that as the correlation among the obhservations of a within
subject factor increases, Tukey performs worse whereas Bonferroni performs
equally well without regard to the correlation.

2. Suggested Multiple Range Tests: Bonferroni and Scheffe

Consider a repeated measures design with one within subject factor having k
levels. In this design, a vector (Xj,X,,,X,) of k levels is observed from each

subject and the observations X, X,,-+, X, are correlated. Suppose that n subjects
are randomly selected for an experiment and let (X, Xy, X;.) be the vector of
observations from the i-th subject for ¢ =1,2,--,n. Let u; be the j-th level mean

and let Yj: E)Qj/n be the j-th sample mean for j=1,2,-.k.

i=1

The first step of analysis is to test if all level means are equal, i.e. p; = = .
If the number of levels is two, then the paired t-test is usually used for testing
the hypothesis. In other words, we conclude that p; = p, at significance level « if

|71_ X2 |

[t,5] = > tla/2,n—1),

[

where S7= Y,(D,— D)*/(n—1) is the sample variance of D, = X, — X,,'s and
k=1

t(a,df) is the upper a-th quantile of the t distribution with degrees of freedom
df. When the number of levels is more than two, Hotelling 77 is usually
employed for testing the hypothesis (see p. 227 of Johnson and Wichern (1992) for
details).

When the hypothesis of all equal level means is rejected, we apply multiple
range tests in order to find some deviations from the hypothesis. A natural choice
of deviations from the hypothesis is of form p; = p; forsomed = j. In this case,

we search for pairs with different means and we call this process as pairwise
multiple comparisons. In other words, we search for all possible combinations (2)

of pairs to find some with different means. A more specific form of deviations can



528 Cheolyong Park - Sangbum Park

be expressed as a nonzero contrast; a contrast is a linear combination of the

k k
means Y ,¢; p; with »,¢;=0. In general, a pair with different means can be
i=1 i=1

expressed as a contrast. For example p; = 1, can be expressed as

k
Niep: = 0 withe, = 1,¢y =— l,cy = =¢, =0.
i=1

Note that there are infinite number of nonzero contrasts.

We now explain how Bonferroni and Scheffe are conducted. Since Bonferroni is
not applicable when the family of interest is the set of infinite number of
contrasts, we will focus on pairwise multiple comparisons. In other words, we

search for pairs with different means among m = g possible pairs. Bonferroni
concludes that j; = p; at significance level « if
It 1> t(a/(2%m),n—1) (2-1)

for any ¢~ j, where {;; is the paired t-test statistic for comparing the i-th and
j—th levels of the factor. The only difference between the paired t-test and
Bonferroni is that the significance level e is adjusted to
[0 [0

—= : in Bonferroni: The false discovery rate criterion
m  number ofcomparisons

adjusts the significance level somewhat differently to improve the power for
detecting actual difference between means of some pairs (see Benjamini and
Hochberg (1995) and Benjamini and Liu (1999) for details). Therefore Bonferroni
can not be used when there are infinite number of comparisons. Bonferroni can be
expressed in terms of the p-value of the paired t-test; we conclude that p; = p;
at significance level o if the p-value is less than a/m.This is a convenient way
of applying Bonferroni in practice when we have the p-value of the paired t-test
from computer output.
On the other hand, Scheffe concludes that u; = p; at significance level « if

451> \/%F(a,k— Ln—k+1)

for any i = j, where Fla,df1,df2) is the upper a-th quantile of F distribution
with degrees of freedom dfl and df2 (see p. 227 of Johnson and Wichern (1992)
for details). Table 1 shows the ratio of the table values of Bonferroni and Scheffe,
given by
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Ha/ (@ m)in—1 /\/ DD fak—1n—k+1),
for various k, n, and a=0.05. Smce the ratio is 1 for k=2, this case is not

reported.

<Table 1> The ratio of table values of Bonferroni and Scheffe
(n=10, 20, 40, 60; k=3, 4, 5, 6, 7, a=0.05)

k
n
3 4 5) 6 7
10 0.9261 0.8216 0.7074 0.9865 0.4581
20 0.9583 0.8992 0.8398 0.7824 0.7274
40 0.9693 0.9245 0.8808 0.8403 0.8029
60 0.9725 0.9315 0.8920 0.8558 0.8227

Scheffe can be used for searching infinite number of contrasts including
pairwise comparisons, and thus the table value of Scheffe, as expected, is bigger
than that of Bonferroni. This means that Bonferroni has more power for detecting
pairs with different means than Scheffe. Since we focus on pairwise multiple
comparisons for a significant within subject factor, we will use Bonferroni from
now on.

We finally explain how Tukey is conducted. This method assumes that the
observations X;,X,,, X, are independent and searches for pairs with different
means after the hypothesis of all equal level means is rejected via the usual
one-way ANOVA table. More specifically, Tukey concludes that p; = u; at

significance level o if

_ X— X | o alakk(n—1)) (2-2)

7. ,
T3] V2MSE/n V2

n k
where MSE= ), E(Xij—fj)Q/(k:(n—l)) is the mean square error of the
i=1j=1
ANOVA table and ¢(a.df1,df2) is the upper «-th quantile of the studentized
range distribution with degrees of freedom dfl and df2 (see p. 575 of Neter et al.
(1985) for details). When the number of levels is two, 7j; is exactly the same as
so called two sample t-test statistic. This means that Tukey employs the two
sample t-test instead of the paired t-test for correlated paired observations and

thus we suspect that Tukey performs well.
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3. Justifications for a Better Performance of
Bonferroni Than Tukey

In this section, we provide justifications why Bonferroni performs better than
Tukey when there is dependence among the observations of a within subject
factor. To make comparisons simple, we assume that the observations

X, Xy, X, of the within subject factor have the same variance ¢ and that any
two different observations have the same correlation p. Here we mainly focus on
the case where p> 0 since the observations from the same subject tend to have
positive correlations and since the actual significance level of Tukey becomes
larger than the nominal a. In Section 2 and 3, we implicitly assume that the
observations follow a multivariate normal distribution.

Theoretical justification is based on asymptotic arguments which hold for large
n. Note that

X— X, B X— X,
YOVESH I V26 (1—p)/n

and

P = A ¢
Y V2 BIMSE)/n \/26%/n

hold for large n, where t; and 7}; are defined in (2-1) and (2-2), respectively.
Thus, for large n, It;|= Iﬂjl/\/l—p holds and lt;;| is approximately 1/v1—p
times as big as |7}j |. However, the table values of Bonferroni and Tukey are

almost the same for large n for the case k£=2,3,4,5,6,7: See Table 2 for the ratio
of the table values

tlo/(2*m),n—1)
Q(aakak(n_ 1))/ \/5

at o= 0.05, where m = (g) is defined just prior to (2-1).

<Table 2> The ratio of the table values of Bonferroni and Tukey
(k=2,3,4,5,6,7; a=0.05; n=o00)

k
2 3 4 5 6 7
@ 1.000 1.022 1.027 1.029 1.030 1.030 g

or large n, therefore, Tukey confronts with some problems if p is far away from
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0. As p becomes close to 1, |7}j| tends to produce smaller values than |tij| and

thus Tukey will have less power than Bonferroni for detecting actual difference
between means present in some pairs. As p becomes close to -1, |7}j| tends to
produce larger values than |tij—| and thus Tukey will have actual significance level
much larger than nominal «, ie. Tukey will conclude more often than expected
that some pairs have different means even when they actually have the same
means.

We have conducted a simulation study to provide empirical evidence that
Bonferroni performs better than Tukey in detecting actual difference between
means of some pairs when the correlation p of the observations are positive but
not too close to 0. When the correlation is negative, however, the actual
significance level of Tukey becomes larger than nominal o and therefore we
exclude the case of negative correlations from this simulation study. The setup for
the simulation is given as follows. We take p=0.2,0.4,0.6,0.8, n=10,20,40,60,
and £=2,3,4,5,6,7. For each p,n.k,

1) We generate a random sample of size n from a multivariate normal distribution
with p;=05(G—1)/(k—1) (i =1,k equally spaced between 0 and 0.5),
o’=1 and p.

2) Bonferroni and Tukey are conducted separately to see if they detect some pairs
with different means.

3) We repeat Steps 1-2 500 times and calculate the proportion of repetitions in
which each method detects at least one pair with different means.

The proportion calculated in Step 3 is called ‘empirical power’ for detecting
pairs with different means. There are a lot of simulation results but they show
almost the same trend. Thus the simulation results for k=2,4,7 are selected for
presentation and shown in Tables 3, 4, and 5.

<Table 3> The empirical powers of Bonferroni and Tukey for k=2

Bonferroni Tukey
n P 14
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
10 0.170 0.166 0184 0.198 0.136 0.068  0.040  0.006
20 0.322 0350 0326 0.306 0.258 0.200  0.070  0.008
40 0.598 0.580 0542 0.588 0.522 0352 0168  0.032

60 0746 0770 0772 0794 0656 0598 0374  0.052
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<Table 4> The empirical powers of Bonferroni and Tukey for k=4

Bonferroni Tukey
n P 14
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
10 0088 0120 0.09  0.120 0.050 0.040 0.012  0.002
20 0184 0184 0222  0.202 0118  0.052  0.012  0.000
40 0416 0432 0414  0.400 0348 0182  0.042  0.002
60 0610 0634 0658  0.598 0528 0332 0120  0.008

<Table 5> The empirical powers of Bonferroni and Tukey for k=7

Bonferroni Tukey
n P P
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
10 0.060 0.086  0.082  0.088 0044 0024 0006  0.000
20 0176 0154 0152  0.136 0106  0.038  0.002  0.000
40 0392 0392 0380 0.382 0292 0154 0026  0.000
60 0558 0572 0614  0.596 0478 0258 0046  0.000

These results can be summarized as the following:

1) The empirical power of Bonferroni is higher than Tukey for each configuration
of our simulation study.

2) For fixed n and k, the empirical power of Bonferroni is almost the same for all
p but that of Tukey decreases substantially as p becomes larger. As a result,
the difference between empirical powers of Bonferroni and Tukey increases as
p becomes larger for fixed n and k.

3) For fixed n and p, the empirical power of each method decreases as the
number of k becomes larger. For fixed k and p, the empirical power of each
method increases as the sample size n becomes larger.

Summary result 3 is well perceived in statistics and is not directly related to
our issue of comparing Bonferroni with Tukey. Summary results 1 and 2 tell us
that Bonferroni is better than Tukey for practically resonable ranges of values
p > 02,n> 10, k< 7 and that, when the correlation p among the observations
is high, Tukey can hardly detect actual difference between means present in some
pairs.
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4. Concluding Remarks

When a statistical methodology is proposed, there are assumptions under which
the methodology is supposed to work well Some assumptions do not produce
serious errors in result unless they are violated in extreme form. Others, however,
are vital to the methodology and violation of such assumptions may result in an
absurd conclusion. For example, while violation of the assumptions such as
normality and equal variances in one-way ANOVA does not cause a serious
problem in F-test if all levels have almost the same sample sizes, the
nonindependence of observations has serious effects on F-test (see pp. 624-25 of
Neter et al. (1985) for details).

Similarly, application of Tukey to post-hoc test procedures in a repeated
measures design may lead to a misleading conclusion on the relationship between
the level means. Employing Tukey for pairwise multiple comparisons requires
satisfaction of the assumption of independence. In a repeated measures design,
however, this assumption is usually violated and Tukey performs badly when it is
applied to the (positively) correlated observations of a within subject factor. When
the correlation p is as high as 0.8 Tukey becomes similar to a procedure with
actual significance level much smaller than nominal o and thus seldom detects
actual difference between means present in some pairs.

On the other hand, Bonferroni is hardly affected by the correlation among the
observations of a within subject factor, and we have provided empirical evidence
and theoretical justification for it. Also, Bonferroni is easy to apply in practice
since all we need to do is to perform paired t-tests for all pairs by any
convenient statistical software; the pair with p-value less than the adjusted
significance level «/m is declared to have different means. Considering its
statistical power for detecting actual differences among level means and
convenience for using in practice, Bonferroni seems to be a better approach than
Tukey or other methods for a between subject factor as post hoc test procedures
for a significant within subject factor.
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