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Reliability In a Half-Triangle Distribution
and a Skew—-Symmetric Distribution

Jungsoo Wool)

Abstract

We consider estimation of the right—tail probability in a half-triangle
distribution, and also consider inference on reliability, and derive the k-th
moment of ratio of two independent half-triangle distributions with
different supports. As we define a skew-symmetric random variable from
a symmetric triangle distribution about origin, we derive its k-th moment.
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1. Introduction

For two independent random variables X and Y and a real number ¢, the
probability P(X<cY) induces the following facts, (i) the probability P(X<cY) is the
reliability when the real number ¢ equals one, (ii) the probability P(X<cY) is the
distribution of the ratio X/(X+Y) when c=t/(1-t) for 0<t<l, and (ii) the
probability P(X<cY) induces the density of a skewed-symmetric random variable
if X and Y are symmetric random variable about origin.

Many authors have considered inferences on the reliability in several continuous
distributions. And in recent Kim(2006), Lee(2006), and Lee & Won(2006) studied
inferences on the reliability in an exponentiated uniform distribution and an
exponential distribution. Ali, et al(2006) studied distribution of the ratio of
generalized uniform variates.

A triangle distribution was applied to a Kkernel function In non-parametric
density estimation, but here we shall consider a half-triangle random variable X
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with its support (0,0) . The pdf of a half-triangle random variable is given by:
flz:0)= %(e—x), 0<x<0 (see Rohatgi(1976)). (L)

For example. when a gas station derives its supply of oil-gas once per 6 -days,
the sales quantity X of the gas during the term of 6 -days follows a half-triangle
distribution. For a special day, supposing we'll get the probability which the
supplied oil-gas has been drained is small, what capacity of oil-gas tank does the
gas station need? So, in the case we can consider the right tail probability of a
half-triangle distribution and also consider the reliability P(Y<X) of two
independent half-triangle distributions. For another example, if an selling

income(Y) of a selling agency per a new car at a motor vehicle shop is Y=2X 2 ,
then X is assumed by a half-triangle random variable. And if X is a half-triangle
random  variable with support, (0,0) , 1—X/0 follows a power function
distribution over (0,1) .

In this paper we consider estimation of the right-tail probability in a
half-triangle distribution, and also consider inference on reliability P(Y<X), and
derive k-th moment of ratio X/(X+Y) for two independent half-triangle
distributions with different supports. As we define a skew-symmetric random
variable from a symmetric triangle distribution about origin which is based on a
half-triangle random variable, and hence we derive its k-th moment.

2. Estimating Reliability
2.1 The right-tail probability

From the density (1.1) of the half-triangle random variable X, the followings are
well-known:

_ ) W 2 kg
k-th moment: F(X*)= (k:+1)(k:+2)9 k=1,2,...
the cdf: Fa)=2200-L), o<z<p .
0 2
From which, its right—tail probability of the half-triangle random variable is given
by: R)=P(X>t)=1—2(0-t—1*/2)/6°. 0<t<¥b 2.1

Assume X;,X,,...,X,, be a sample from the half-triangle distribution with density
(1.1). Then, since the MLE 6 of 6 is the greatest order statistics X, , and
hence, by a power of the binomial and the density of X,) , k-th moment of
X(,») can be obtained as;
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ExE ) =clm.k) - 0"k is an integer (2.2)
m—1 .

where c¢(m.k)=m Y, (—1) Qmﬂ(mi 1)/((m+k+i)(m+k¢+i+1)) Jifm>—k .
=0

From the moment (2.2), we define an unbiased estimator of 6 as follows:
0= X(,,)/c(m,1) is an unbiased estimator of 6 . (2.3)
From the MLE 6 and an unbiased estimator @ of 0 in (2.3), the MLE E(¢)

and a proposed estimator }?(?) of the right-tail probability R(t) in the
half-triangle distribution are given by:

R@): 1— 2t (1/X(m) - t/(QX(Qm)))
Rit)=1-2¢ (c(m1)-X(p) — tle(m,1))?/ (2X7,))) (24)

From two right-tail probability estimators (2.4) and k-th moment (2.2), we obtain
expectations and variances of R(t) and R(t) :

For m>2,
E(}E(i)): 2 le(m—1) -0 '—t-c(m.—2) -0 %/2] .
ERE))=1—2t[clm,1) - ctm—=1)- 0 ' —t+clm,1)? - clm.—2) - 0 %/2] ,
AR(R(t )= 2[ ce(m,—4) - 974/4—t «e(m,—3) - 973+c(m,—2) <02

—(c(m,—l) SO0 —¢ - c(m,—2) . 972/2 )2] .
VARG = 4210~ + A (mo1)/ (4 + clm—4))—t - Fmi1) - 9*3/c(m,—3)+% :

—(etm,1) «elmy—1) - 0 =t F(m,1) « elm,—2) -0 2/2)%] .

From means and variances of R/G) and E(ti), Table 1 shows numerical values

of mean squared errors(MSE) of R(f) and R(¢{) when n=10,20,30, 0 =10, t=(89)
and 0=20, t=(18,19).
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Table 1. Mean squared errors of R(¢) and R(t)

=10 0=20
m/t 8 9 18 19
1o M) | 008807 | 017161 | 017161 | 025645
7)) | 000763 | 001655 | 00165 | 002490
b | KD | 000259 | 000911 | 000909 | 001763
7)) | 000117 | 000103 | 000103 | 000158
s | A | 000113 | 000134 | 000184 | 000446
7)) | 000075 | 000035 | 000035 | 000042

From Table 1, we observe the following:

Fact 1. The proposed estimator R(t) performs better than the MLE R(¢) in a
sense of MSE when n=10,20,30, # =10 and ¢t = (8,9), and # =20 and ¢ = (18,19).

2.2. Estimating reliability P(Y<X)

Here assume we consider an inference on reliability P(Y<X) of two independent
half-triangle random variables X, Y with different supports (0,0,)and(0.6,) ,
respectively, then the reliability R=P(Y<X) can be obtained as:

If 0<p=6,/6,<1, then R(p)=R=P(Y<X)=—p"/6+2p/3,
and hence its reliability R(p) is a monotone increasing function of 0 < p<1 .

Because R(p) is an increasing function of p on (0,1) , an inference on the
reliahility is equivalent to an inference on p (see McCool(1991)). After hence we
consider inference on p=0,/0, when the 0,s is parameter in the density (1.1),
instead of estimating R=P(Y<X).

Remark 1. If p>1 , then, for n=10,/0, P(X<Y)=—n"/6+21/3 is a monotone
increasing function of 0<n<1, and hence we can consider inference on
reliability on n=6,/6, by the same method.

Assume X, X5 ..n X, and ¥, ¥5,..., Y, be two independent samples from X and Y
with the density (1.1) having its supports (0, #;) and (0, 6,), respectively. Then
we define the following three estimators of p as:

The MLE of p : p=0,/0= X(,,)/ Y1)

An unbiased estimator of p : p= X(,,)/(c(m,1) « eln,—1) - ¥(,))

A proposed estimator of p @ p=(c(n,1) « X,,))/(c(m,1) + ¥,,) ,

n
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i gm l(m 1) 1
i J(m+k+i)m+k+itl

where c¢(m,k) = E ] gafm>—k .

Based on three estimators and densities of the greatest order statistics X, and
Y(,) , we can obtain the following expectations and mean squared errors(MSE's)

of ppuand p

Fact 2. If n>2. then expectations and MSE’s of pA, ;,and p are :
(a) E(p)=clm,1) - cln—1) -
E(p)=cln,1) « eln,—1) -

(b) E n,1 0.

() MSE(p)=[e(m,2) « c(n,—2)=2 - c(m,1) - c(n,— 1)+ 1]p”

(d) MSE(p)=le(m,2) - c(n,~ 2)/( (m,1) - ¢ (n,—1))—1]p”

(e) MS (5):[ (n,1) « e(m,2) « eln,—2)/c*(m,1)— 2-c(m,l)-c(n,—l)—i—l]p2

From expectations and MSE of p, p, p in Fact 3, Table 2 shows the numerical
values of MSE's of p, p,andp , when m and n are 10, 20, 30.

Table 2. Mean squared errors of p, p,andp (unit: p* )
m n p p p
10 0.09477 0.08592 0.09477
10 20 0.05199 0.056325 0.05535
30 0.05024 0.04569 0.04666
10 0.10996 0.06650 0.07373
20 20 0.03588 0.03442 0.03589
30 0.02632 0.02699 0.02760
10 0.12676 0.06104 0.06781
30 20 0.03637 0.02912 0.03039
30 0.02224 0.02174 0.02224

From Table 2, we observe the following:
Fact 3. An unbiased estimator p performs better in a sense of MSE than other

two estimators p and p unless (m, n)=(10,20) and (m, n)=(20,30), when m and n
are 10, 20, 30.

From Fact 3, because three proposed estimators can’t dominate each other, we can
recommend another biased estimator which mean squared error is minimized. A

biased estimator p is defined by:
ctm,1) - eln—1) = Xm)
e(m,2) - e(n,—2) Y ’

n)

he
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e(m,2)eln,—2)—c(m,1)e(n,— 1) L2
e(m,2)eln,—2) P

and, hence MSE (;) =

Therefore, we can obtain:
Fact 4. The biased estimator p has less MSE than other three estimators.

From the quotient density in Rohatgi(1976, p.141), independence of X’'s and Y’'s,
and the densities of the greatest order statistics X, andY,, , the quantity

X,/ 0
Q= ﬁ 1s a pivot quantity having the following density:
n 2
z—lx. ifo<a<1
13 3
L7227 : >
3x 5 z °, ifz=1

From the density of the quantity Q, (1—p, —p,)100% confidence interval of p is
1 . X(m) 1 . X(m) )
U(pQ) Y(n) ’ l(pl) Y(n) ’

Moo © 2 1
Z —rdr=yp,, f Lr -2 3de=0p, .
where fo 3 3rdr=p u(p2)3x 5% de=p,

given by: (

Remark 2. For given small positive numbers p;andp, with 0<1—p, —p, <1 |

1
l(pl):2_ \/4—6])1 andu(pQ): W(Q_'— 4_6172) .
2

Next we consider the following null hypothesis :
Hyi0, =0, against H, :0,=0y(or 0, <0y0r 0;>0,) .

As applying the likelihood ratio test of size a in Rohatgi(1976, p.436), we apply
the following corresponding critical region:

X X '
m) (EY=92— V1=3a or tm) w(S) =

1
Yin) 2 Yin) 2'7 3a

24+ vV4—3a)

3. Distribution of a ratio

In this section we consider distributions of product, quotient, and ratio of two
independent half-triangle random variables X and Y having the density (1.1) with
different support 6, andé, respectively .

From the product density, quotient density, and independence of X and Y in
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Rohatgi(1976, p.141), the densities of V=XY and W=Y/X can be obtained hy:

0,0
fv(v)zﬁ[(9192+v) s In——2—2(0,0,— )], if0< v < 6,0, .
1v2
6? 0 0
_l._l.w+z._l’lfo<w<_2
30 3 0, 6,
Swlw) = ) . .1
2. % 1 1 % 1 .6
30 w3 6 w® 1 0, —

Since R=X/(X+Y)=1/(1+W) is a function of W, by using the quotient density (4.1)
we derive the density of ratio R=X/(X+Y) of two independent half-triangle random
variables X and Y having the density (1.1) with different supports ¢, and 0,

respectively.

1 9% _3 2 0, ., . 0,
_5.9_3.(1 )t +§-9—2t ,1f91+92<t<1
frlz)= 2 (42)
2 @(1_t)*2_l-&-t-(1—t)*3 ifo<t= 4
3 6 3¢ ’ 0,40,

From the density (4.2) of the ratio R=X/(X+Y), we can obtain mean and variance
of ratio R=X/(X+Y) of two independent half-triangle random variables X and Y
having the density (1.1) with different support 6, and 6, respectively .

For p=20,/0, ,
BR)= (0" + 5oL (p 4 5 ()4 500 = p) 4 5
and
Var(R) =56 - In e (072 4 57 ) - (1 p) 4 (o )T
(%p’%%p’l) : 1}r—p+(%p*+%) . HTP— EX(R) .

4. A skew-symmetric distribution.

Based on the density (1.1) of a half-normal random variable, two independent
random variables X and Y are defined as the same density:

Gla)=glz)=0-121)/6° —0<z<6, 6>0, .1

which is a symmetric triangle density about zero, and it has mean zero and
variance 6°/6.
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From our introduction of deriving a skewed density based on a symmetric density
about zero in section 1, for any real number c,

g(zie)=2-glz) - Glez) , (5.2)

which is a skewed density g(z;c) of a continuous random variable Z (see in Ali
and Woo(2006)).

From the symmetric density (5.1) we derive the following cdf G(x) of X:
Glz)=(—sgn(z) - 2%/24+0 - 2 +0%/2)/6°, —0<z<0, (5.3)

1. ifz=0

where sgn(z)= {_1 ifz<0

Lemmas 2 & 3 in Ali and Woo(2006) will be introduced as follow:.

Lemma 1. If g(zic)= 2g(z)G(cz) is a skewed density of a continuous random
variable Z which is denoted by Z~ SD(c) and G(z;c) is the cdf of Z, then

(a) Z~ 8D(c) &—Z~ SD(—C) for every real number c. For the skew-symmetric
distribution G(z;c), G(z;—¢) =1-G(-z;c).

(c) Let S(ze) f f g(t)g(s)dsdt. Then G(z;c)=G(2)-25(z;c), S(zc)=-S(z;-¢),
and S(-zc) =S(zc).

From the densities (5.1) & (5.2) and the distribution function (5.3), we get the
following skewed density g(zc) of a random variable Z:

glzie)=(0— 1 21 )—sgn(cz)c®2> +2¢0 - 24+6%)/0*, —0<z2<0. cER! 5.4)
which becomes a skewed density.

From the above Lemma 1, it's sufficient for us to consider the following
skew-symmetric distribution function of Z:

Glzie) = G(z)—2 -« S(z;e), B.5)
From the above iterated integral (5.5) in S(z;c) and the density (5.1), we obtain

the S(zc):
For any z>0 and ¢>0,
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S(ze)=[(4—c)cl*/24— 02> + (2 +¢)eh22 /6 — *2*/8] /0" (5.6

From the cdf G(x) in (5.3) and the integral S(z;c) in (5.6), the skew-symmetric
distribution G(z;c) of the skew-symmetric random variable Z is obtained as;

Glzie)=(— sgn(z) . z2/2+9 . z+92/2)/92 -
2[(4—c)c0t/24 — c0?22 + (24 ¢)eh23/6— 221/8]/0%, 2> 0,c> 0.

Remark 3, If Z<0 and ¢<0, then we can obtain the skew-symmetric distribution of
Z from the results in Lemma 1.

For ¢>0, from the skewed density (5.4) we can obtain k-th moment of the
skew—-symmetric random variable Z as below:
E(Z%e) =01+ =18/ (k+ 1) -0+ =18/ (k+2)+2c(1— (= 1))/ (k+2)+
+2e(—14+ (=1 /k+3)+ A (= 1+ (=15 (k+3)+ 21— (—1)F)/(k+4)].

Remark 4. If ¢<0, then E(Z*;¢)=(—1)*E(z*; —¢), from Lemma 1(a).

From k-th moment of Z, we can derive mean and variance of a skew-symmetric
random variable Z:

E(Z;e)=0(—c2/104+¢/3), ¢>0, (5.7)

Var(Z;¢)=6°[1/6— (— c2/10+¢/3)%], if 0 < e¢<5/3+ V25+90/ V6 /3 = 4.2858766
From the k-th moment (5.7) and Remark 4, we evaluate means, variances and the
coefficient of skewness as below:

. If c=%1/2, then mean==+0.1467, variance=0.14660, and skewness=+ 2.56049

. If ¢c=%3/5, then mean==+0.1640, variance=0.13977, and skewness=+ 3.25945

. If ¢=%x1.0, then mean=+0.2333, variance=0.11222, and skewness=+ 7.24083

. If c=%5/3, then mean=+0.2778, variance=0.08906, and skewness=+ 16.8242

. If ¢=%2.0, then mean=20.2667, variance=0.09556, and skewness= T 18.7063

where the signs of c—values and skewness preserve the same order.

o o0 T

Hence if c-values are positive, then the density g(z;c) in (5.4) is skewed on the
left. And if c-values are negative, then the density g(z;c) in (5.4) is skewed on
the right.
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