DOI QR코드

DOI QR Code

Effect of Sintering Temperature on Electrical Properties and Stability of Zn-Pr-Co-Cr-Tb-Based Varistors

Zn-Pr-Co-Cr-Tb계 바리스터의 전기적 특성 및 안정성에 소결온도가 미치는 영향

  • Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University)
  • 남춘우 (동의대학교 전기공학과)
  • Published : 2007.06.27

Abstract

The electrical properties and its stability of Zn-Pr-Co-Cr-Tb-based varistors were investigated for different sintering temperatures. As the sintering temperatures increased, the varistor voltage decreased in the range of $705.2{\sim}299.1$ V/mm, the nonlinear coefficient decreased in the range of $42.4{\sim}31.7$, and the leakage current was in the range of $1.0{\sim}1.7\;{\mu}A$. The stability of electrical characteristics increased with the increase of sintering temperature. The varistors sintered at $1350^{\circ}C$ marked the high electrical stability, with $%\Delta$ $V_{1mA}=+0.1%,\;%\Delta{\alpha}=+3.2%$, and $%{\Delta}I_L=+117.6%$ for DC accelerated aging stress state of $0.95V_{1mA}/150^{\circ}C/24\;h$.

Keywords

References

  1. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986)
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. K. Mukae, K. Tsuda, and S. Shiga, IEEE Trans. Pow. Deliv., 3, 591 (1988) https://doi.org/10.1109/61.4296
  4. S. Shichimiya, M. Yamaguchi, N. Furuse, M. Kobayashi, and S. Ishibe, IEEE Trans. Pow. Deliv., 13, 465 (1998) https://doi.org/10.1109/61.660916
  5. K. Mukae, Am. Ceram. Soc. Bull., 66, 1329 (1987)
  6. A. B. Alles and V. L. Burdick, J. Appl, Phys., 70, 6883 (1991) https://doi.org/10.1063/1.349812
  7. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Amer. Ceram. Soc., 76, 2098 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  8. Y.-S. Lee, K.-S. Liao and T.-Y. Tseng, J. Amer. Ceram. Soc., 79, 2379 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  9. C.-W. Nahm, Mater. Lett., 47, 182 (2001) https://doi.org/10.1016/S0167-577X(00)00262-7
  10. C.-W. Nahm, J. Mater. Sci.:Mater. Electron. 15, 29 (2004) https://doi.org/10.1023/A:1026236803798
  11. C.-W. Nahm, Mater. Lett., 57, 1317 (2003) https://doi.org/10.1016/S0167-577X(02)00979-5
  12. C.-W. Nahm, B.-C. Shin, and B.-H. Min, Mater. Chem. Phys., 82, 157 (2003) https://doi.org/10.1016/S0254-0584(03)00213-X
  13. C.-W. Nahm, Mater. Lett., 58, 2252 (2004) https://doi.org/10.1016/S0167-577X(04)00104-1
  14. C.-W. Nahm, J.-A. Park, B.-C. Shin, and I.-S. Kim, Ceram. Internation. 30, 1009 (2005) https://doi.org/10.1016/j.ceramint.2003.10.020
  15. C.-W. Nahm, Kor. J. Mater. Res., 16, 466 (2006) https://doi.org/10.3740/MRSK.2006.16.8.466
  16. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 97, 109 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  17. J. Fan and R. Freer, J. Am. Cearm. Soc., 77, 2663 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04659.x