DOI QR코드

DOI QR Code

Fabrication of Porous β-TCP Bone Graft Substitutes Using PMMA Powder and their Biocompatibility Study

PMMA를 이용한 다공질 β-TCP 골충진제 제조 및 생체적합성 평가

  • Song, Ho-Yeon (Department of Microbiology, School of Medicine, Soonchunhyang University) ;
  • Youn, Min-Ho (Department of Biomedical Engineering & Materials, School of Medicine, Soonchunhyang University) ;
  • Kim, Young-Hee (Department of Microbiology, School of Medicine, Soonchunhyang University) ;
  • Min, Young-Ki (Department of Physiology, School of Medicine, Soonchunhyang University) ;
  • Yang, Hun-Mo (Department of Physiology, School of Medicine, Soonchunhyang University) ;
  • Lee, Byong-Taek (Department of Biomedical Engineering & Materials, School of Medicine, Soonchunhyang University)
  • 송호연 (순천향대학교 의과대학 미생물학교실) ;
  • 윤민호 (순천향대학교 의과대학 의공학교실) ;
  • 김영희 (순천향대학교 의과대학 미생물학교실) ;
  • 민영기 (순천향대학교 의과대학 생리학교실) ;
  • 양훈모 (순천향대학교 의과대학 생리학교실) ;
  • 이병택 (순천향대학교 의과대학 의공학교실)
  • Published : 2007.06.27

Abstract

Porous ${\beta}-tricalcium$ phosphate $({\beta}-TCP)$ bioceramic was fabricated by pressureless sintering using commercial HAp and different volume percentages of PMMA powders (30-60 vol.%). The range of spherical pore size was about $200-250\;{\mu}m$ in diameter. By increasing the PMMA content, the number of pores and their morphology were dramatically changed as well as decreased the material properties. In case of using 60 vol.% PMMA content, network-type pores were found, due to the necking of the PMMA powders. The values of relative density, elastic modulus, bending strength and hardness of the 60 vol.% PMMA content sample, sintered at $1500^{\circ}C$, were about 46%, 22.2 GPa, 5MPa and 182 Hv respectively. Human osteoblast-like MG-63 cells and osteoclast-like Raw 264.7 cells were well grown and fully covered all of the porous ${\beta}-TCP$ bodies sintered at $1500^{\circ}C$.

Keywords

References

  1. K.D. Groot, biomaterials, 1, 47 (1980) https://doi.org/10.1016/0142-9612(80)90059-9
  2. I.C. Kang, S.H. Cho, H.Y. Song and B.T. Lee, J. Kor. Ceram. Soc., 41, 560 (2004) https://doi.org/10.4191/KCERS.2004.41.7.560
  3. D.C. Moore, M.W. chapman and D. Manske, J. Orthop. Res., 5. 356 (1987) https://doi.org/10.1002/jor.1100050307
  4. W. Suchanek and M. Yoshimera, J. Mater. Res, 13, 94 (1998) https://doi.org/10.1557/JMR.1998.0015
  5. G. Daculsi, J. M. Bouler and R. Z. LeGeros, Int. Rev. Cytol., 172, 129 (1997) https://doi.org/10.1016/S0074-7696(08)62360-8
  6. Y.C. Tsui, C. Doyle and T.W. Clyne, Biomaterials, 19, 2015 (1998) https://doi.org/10.1016/S0142-9612(98)00103-3
  7. Y.C. Tsui, C. Doyle and T.W. Clyne, Biomaterials, 19, 2031 (1998) https://doi.org/10.1016/S0142-9612(98)00104-5
  8. S. W. K. Kweh, K. A. Khor and P. Cheang, Biomaterials, 21, 1223 (2002) https://doi.org/10.1016/S0142-9612(99)00275-6
  9. T. Matsumoto, M. Okazaki, M. Inoue, Y. Hamada, M. Taira and J. Takahashi, Biomaterials, 23, 2241 (2002) https://doi.org/10.1016/S0142-9612(01)00358-1
  10. M. Manso, M. Langlet, C. Jimenez and J.M. Martinez-Duart, Biomolecular Eng., 19, 63 (2002) https://doi.org/10.1016/S1389-0344(02)00012-6
  11. Y.C. Yang and E. Chang, Biomaterials, 22, 1827 (200) https://doi.org/10.1016/S0142-9612(00)00364-1
  12. C. Chenglin, Z. Jingchuan, Y. Zhongda and W. Shidong, Mater. Sci. Eng. A, 271, 95 (1999) https://doi.org/10.1016/S0921-5093(99)00152-5
  13. S.L Ding, Y.M. Su, C.P. Ju and J.H. Chern Lin, Biomaterials, 22, 833 (2001) https://doi.org/10.1016/S0142-9612(00)00247-7
  14. M.H. Youn, R.K. Paul, H.Y. Song and B.T. Lee, Mater. Sci. Forum, 534, 49 (2007) https://doi.org/10.4028/www.scientific.net/MSF.534-536.49
  15. G.K. Asit, H.Y. Song and B.T. Lee, Scrip. Mater., 54, 2081 (2006) https://doi.org/10.1016/j.scriptamat.2006.03.009
  16. C. Fleurya, A. Petita, F. Mwalea, J. Antonioua, D.J. Zukora, M. Tabrizianb and O.L. Huka, Biomaterials, 27, 3351 (2006) https://doi.org/10.1016/j.biomaterials.2006.01.035
  17. H.K. Xu, L.E. Carey, G Simon, S. Takagi and L.C. Chow, Dent. Mater, In press (2006) https://doi.org/10.1016/j.dental.2006.02.014
  18. P.D. Callis, K. Donaldson and J.F. McCord, Clinic. Mater., 3, 183 (1988) https://doi.org/10.1016/0267-6605(88)90055-8
  19. O. Gauthier, J.M. Bouler, E. Aguado, P. Pilet and G. Daculsi, Biomaterials, 19, 133 (1998) https://doi.org/10.1016/S0142-9612(97)00180-4
  20. C.H. Lee, M.H. Youn, H.Y. Song and B.T. Lee, J. Kor. Inst. Meter. Res., 15, 3 (2005)
  21. H.Y. Song, Y.H. Kim, K.K. Ko, Y.H. Kim, I.H. Oh and B.T. Lee, J. Kor. Inst. Met. Mater., 44, 6 (2006)

Cited by

  1. Calcium Orthophosphate-Based Bioceramics vol.6, pp.9, 2013, https://doi.org/10.3390/ma6093840