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Weight functions in fracture mechanics represent the siress intensity factors as weighted averages of the externally
impressed boundary tractions and body forces. We extended the weight function theory for cracked linear elastic
materials to calculate the notch stress intensity factor of a notched structure with anti-plane deformation. The
well-known method of deriving weight functions by differentiation cannot be used for notched structures. By
combining an appropriate singular field with a regular field, we derived weight functions for the notch stress
intensity factor. Closed expressions of weight functions for notched cylindrical bodies are given as examples.

NOMENCLATURE

¢ = notch stress intensity factor

F = body force density vector

K, Ky, Ky = stress intensity factors for modes 7, /7, and /1]
# = unit vector normal to S

T = surface traction vector

Wf = displacement of a fundamental field (weight function)
z , 7] =complex variables

@,,¢, = harmonic functions, i.e., V2¢1 = V2¢2 =0

M = shear modulus

1. Introduction

Bueckner’s weight function is useful in fracture mechanics
because it gives a universal form for calculating stress intensity
factors once it has been established. A weight function, which is the
displacement of a fundamental field', is generally different for each
body shape containing a crack. However, for a given geometry, the
weight function can be used to compute the stress intensity factor for
an arbitrary distribution of loads. We considered an elastic body ¥
with a crack ¢ (Fig. 1). The three stress intensity factors at a generic
point O, K;(Q), K;(0), and Ky (Q), are linear functions of the fields
Fand T,

KAQ)= [FW,dv+ [T-W,dS  (J=1ILII) )

The displacement field W " or weight function, depends on the field
location, Q, and the fracture mode, J, but is independent of 7 and 7.
This independence of the loading condition makes weight function
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Fig. 1 Diagram of a cracked body
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Fig. 2 Symmetric loading

theory of considerable value. Several methods have been developed
to calculate the weight function for a given problem.
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For the case with a planar crack in which both the body and all
load systems under consideration are symmetrical about the plane of
the crack (Fig. 2), Rice derived a weight function by differentiating
the displacement solutions with respect to the crack length.? Parks
and Kamenetzky’ and Vanderglas® used similar methods to virtually
extend the crack and produce weight functions. If the loading
condition is not symmetric with respect to the crack, or if the structure
has a notch instead of a crack, the method of differentiation cannot be
used. Because weight function theory is based on the reciprocal
theorem, a weight function can be calculated wherever the reciprocal
theorem can be applied. Bueckner® and An® showed that the weight
function for a given geometry can be obtained by combining
appropriate singular and rectangular solutions. Weight function theory
is not restricted to cracked bodies; it can be extended to structures
with notches in which the notch angle is not zero. For an anti-plane
deformation, the governing equation becomes Laplace’s or Poisson’s
equation. In this case, the reciprocal theorem can be derived from
Maxwell and Betti’s reciprocity theorem’, or from the second form of
Green’s theorem®,

> > _ i, 9% o¢, )
Vj(¢,v ¢, — B,V )V = SMEds —Sj¢25ds

Choosing a suitable field 4,, the weight functions for a given structure
can be obtained. We demonstrate this procedure for an anti-plane
case with longitudinal shear deformations.

2. Fundamental Results of Mode III Deformation

Figure 3 shows a cylindrical body with generators parallel to the
x; axis of a rectangular Cartesian coordinate system (x;, x5, x3). The
cross-section of the body in the (xy, x,) planc is bounded by a polygon
O, A, B, C, D, where the sides O4 and OD form the notch. We
assume mirror symmetry with respect to the x, axis, as well as mode
I 1oading. The notch angle is 2(7— 7). In polar coordinates (r, 6),
the two flanks OD and OA have polar angles of yand —, respectively.

For mode IIl loading, the only nonzero component of the
displacement is w along axis x;, where w is a function of the x; and x,
coordinates only. As a consequence, all strain components vanish
identically, except for the longitudinal shears. Within the context of
the usual assumptions for an isotropic material and small
deformations, all stresses vanish except the longitudinal shears. From
Hooke’s law, the components of the stress tensor become

0, =0y, =0,3=0

ow
=== &)
a ox,

Ty =H » Ty

0ox,
In the absence of body forces, the equilibrium condition requires

91y 9t _ @
&, = ox,

From Egs. (3) and (4),

2 2
a_v: +é__w7 =9 (5 )

ox,°  Ox,
i.e., w is harmonic. It is well known that the harmonic function can be
described with the aid of w(z), which is holomorphic in z=x; + ix;

inside the polygon. The real and imaginary parts of w(z) are harmonic.
The imaginary part of w(z) yields

Hw=Ime (6)

for the displacement w in the x; direction. Using the Cauchy-Riemann
equation

0Rew Olmw %)
ox, 0Ox,
we obtain
0'(2) =7, +iTy, (8)

for the two shearing stresses %3 and 73, From Eq. (8), it follows that
the material to the right of an oriented line element ds in Fig. 3
applies a force T ds to the material to the left of the element per unit
length

Tds = 7;,dx, — 7,;dx, = —Redw 9
XZAL
D < C
2 — ) N
L

o e o
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Fig. 3 Notched cylindrical body

3. Asymptotic Field Quantities near the Notch Tip and the
Fundamental Field

For the notch, we assume for simplicity that the flanks bear no
traction in the neighborhood of O. In this case, Eq. (9) implies that
a(z) has a constant real part on either flank for sufficiently small r.
To verify this condition, we consider the special case

2w/§cz/1
Jr

with a real coefficient ¢ and a real exponent 4. With Rew = a constant
on either flank,

w(z) = (10)

cosdy =0 (1m

so that
A=7m/2y 12)

gives the smallest possible positive 4. From this, we infer that the
asymptotic behavior of a generic field of deformation is of the form

(z) ~ zb, A=7x/2y (13)
NTT
It follows that the stresses are asymptotically
. 242 ¢ 11
Ty +iTy ~A—— 12 (14)
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Thus, 4 <1 for y > n/2; in this case, the stresses are unbounded near
z =0 and we can designate the coefficient ¢ in Eq. (13) as the notch
stress intensity factor. If y = w, the notch becomes a crack and the
notch stress intensity factor ¢ becomes a stress intensity factor Kl
From Eq. (14), the stresses near the front of the crack tip become

T,y +it, ~K,, N2/ 727" (15)

We use fundamental fields and weight functions to determine ¢. The A
and —A are simultaneous solutions to Eq. (11), and we define the
Jundamental field as any field derived from a holomorphic function
Q)(z) within the polygon such that

Q(z) ~ z™* near 0 (16)

If X is given by Eq. (12), the field will be reguiar.

4. Weight Function Formula

We apply the reciprocity theorem to fundamental and regular
fields by excluding the interior of the cylinder r = p shown in Fig. 3.
The cross-section of the remaining body is bounded by a circular arc
I'(p) of radius p, and by T of the polygon for which r > p. We
distinguish the quantities of regular and fundamental fields by the
subscripts » and f; respectively. The Maxwell and Betti reciprocity
theorem can now be written in the form

I (erf -w,T, )ds = waT,ds
r

I'(p)

(a7

The above equation can also be derived from Eq. (2). By setting

¢ =Imw, ¢, =ImQ (18)

the displacement and traction of regular and fundamental fields come
from ¢, and 4, respectively. Here, we have used 7,=0 on I'. Using
Egs. (9), (10), and (16), we treat the integral over I'(p) as follows:

J(WrTf —wa,)dS

L(p)

N 2x/§c

~ J'[Imz"ldRez‘ —Imz‘dRez"] (19)
s r(p)
Integrating by parts with respect to d Re z %, we obtain
Nr _

ﬁf I (w,Tf ——wa,)ds =Im Iz ‘et =—r

2V2¢ 1, T(p)
In the limit as p — 0, we may write

227
- (20)

p c= f[w'f T ds

which represents the weight function formula for ¢. The above
formula can be extended to regular fields with body forces.> Apart
from arbitrary rigid body motion, the fundamental ficld is unique.

5. Examples

The fundamental field can be given in closed form for two special
cases. For the infinite structure in Fig. 4, the fundamental field is

Qz)=z* A=n/2y @1)

Xy

de®
F

de=*

Fig. 4 Infinite structure with a notch

For the structure in Fig. 5, which consists of the portion of the
structure in Fig. 4 where r < a,

Qz)=z"— (z/azy1 22)

X9

Fig. 5 Circular cross-section with a notch

For the case of Fig. 4, we consider a regular field responding to the
concentrated forces F, —F at the boundary points z = de”, z = de™ ",
respectively. Here, F > 0 indicates a force in the direction of the
positive x; axis. From Eqgs. (6) and (21),

pw, = d ™ sin(=Ay) at z = de” (23)
This and Eq. (20) lead to
1
c=—d™'F (24)

2z

for the notch stress intensity factor of the regular field. The same
result can also be obtained by a direct analysis of the regular field. In
our particular case, we consider the following transformation:

(i)

This maps the shape of Fig. 4 in the z plane onto the right half-plane
of Re 77> 0. Considering the traction discontinuity along the flanks
of the cylindrical body given by Eq. (9), the holomorphic function

23
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aX 1) can be found in closed form,

iF +1i
() == log T (26)
T n—i
in the complex 7 plane. Expanding Eq. (26) near z = 0 gives
il A Z g
a(z)y=—|log(-1)~i2| =| +--- 27)
/4 d

and we can confirm the value of ¢ given by Eq. (24).

6. Conclusion

The well-established weight function theory for cracked linear
elastic materials was extended for notched structures with anti-plane
deformation. We constructed the fundamental fields directly by
combining an appropriate singular field with a regular field. Closed
forms of weight functions were given for cylindrical-shaped
structures as examples.
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