다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium.

  • 우상민 (영남대학교 응용미생물학과) ;
  • 우재욱 (영남대학교 응용미생물학과) ;
  • 김상달 (영남대학교 응용미생물학과)
  • Woo, Sang-Min (Department of Applied Microbiology, Yeungnam University) ;
  • Woo, Jae-Uk (Department of Applied Microbiology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University)
  • 발행 : 2007.06.28

초록

식물성장촉진 호르몬인 auxin, 식물병원성 진균의 생육을 억제하는 siderophore, 그리고 세포벽이 cellulose로 구성된 식물병원성 진균의 세포벽을 분해하는 cellulase를 동시에 생산하는 PGPR균주이자 생물방제균주로 선발된 Bacillus licheniformis K11이 생산하는 항진균성 siderophor의 특성을 확인한 결과 catechol type의 siderophore로 확인하였다. 또한 B. licheniformis K11의 siderophore 생산조건을 조사한 결과 nutrient broth(pH 9.0)를 $20^{\circ}C$에서 96 h 배양시 가장 많이 생산하였다. 그리고 탄소원과 질소원으로는 각각 trehalose와 $NH_4Cl$ 첨가시 siderophore를 가장 많이 생산하였다. 그리고 $siderophore_{K11}$의 정제는 Amberlite XAD-2과 sephadex LH-20 column chromatography를 통해 수행하였으며, HPLC를 통해 단일 물질임을 확인하였다. 정제된 $siderophore_{K11}$은 2, 3-dihydroxybenzoate의 유도체로 추정하며, P. capsici의 zoospores와 F. oxysporum의 conidia의 발아를 강하게 억제하였다.

Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.

키워드

참고문헌

  1. Arima, K., H. Imanaka, M. Kousaka, A. Fukuta, and G. Tamura. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575-576 https://doi.org/10.1271/bbb1961.28.575
  2. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
  3. Bergeron, R. J. and J. S. McManis. 1991. Synthesis of catecholamide and hydroxamate siderophore. In CRC Hanbook of Microbial Iron Chelates, (ed) G. Winkelmann, CRC Press, Boca Raton, F1. pp. 271-307
  4. Brian, P. W., J. M. Wright, J. Stubbs, and A. M. Way. 1951. Uptake of antibiotic metabolites of soil microorganisms by plant. Nature, 167: 347-349 https://doi.org/10.1038/167347a0
  5. Corbin, J. L. and W. A. Bulen. 1969. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N, 6-N-di-(2,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 8: 757-762 https://doi.org/10.1021/bi00831a002
  6. Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53: 517-530
  7. Csaky, T. 1948. In the estimation of bound hydroxylamine. Acta Chem. Scand. 2: 450-454 https://doi.org/10.3891/acta.chem.scand.02-0450
  8. Glick, B. R., C. L. Patten, G Holguin, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press. Canada
  9. Gregory, K. F., O. N. Allen, A. J. Riker, and W. H. Peterson. 1952. Antibiotics as agents for the control of certain damping-off fungi, Am. J. Botany. 9: 405-415
  10. Han, K. H., C. U. Lee, and S. D. Kim. 1999. Antagonistic role of chitinase and antibiotic produces by Promicromonospora sp. KH-28 toward F. oxysporum. Kor. J. Appl. Microbial. Biotechnol. 27: 349-353
  11. Hider, R. C. 1984. Siderophore mediated absorption of iron. Structure & Bonding. 58: 25-87 https://doi.org/10.1007/BFb0111310
  12. Ito, T. and J. B. Neilands. 1958. Products of 'low-iron fermentation' with Bacillus subtilis: isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine. J. Am. Chem. Soc. 80: 4645-4647 https://doi.org/10.1021/ja01550a058
  13. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-Producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34: 94-100
  14. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. Selection of the Auxin, Siderophore, and Cellulase-Producing PGPR, Bacillus licheniformis K11 and Its Plant Growth Promoting Mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50: 23-28
  15. Jung, H. K. and S. D. Kim. 2004. Selection and antaginistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Kor. J. Microbiol. Biotechnol. 32: 312-316
  16. Katiyar, V. and G. Reeta. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  17. Kim. K. Y. and S. D. Kim. 1997. Biological control of Pyricularia aryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Kor. J. Appl. Microbiol. Biotechnol. 25: 396-402
  18. Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28: 334-340
  19. Lee, J. M., H. S. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophore-producing Pseudomonas fluorescens GL7 and its biocontrol activity against root-rot disease. Kor. J. Appl. Microbiol. Biotechnol. 27: 427-432
  20. Lee, M. W. 1997. Root colonization by beneficial Pseudomonas spp. and bioassay of suppression of fusarium wilt of radish. The Kor. J. Mycol. 25: 10-19
  21. Lee S. Y., S. B. Lee, Y. K. Kim, and H. G. Kim. 2004. Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Kor. J. Pesti. Sci. 8: 71-78
  22. Leoffler, W. J., S. M. Tschen, N. Vanittanakom, M. Kugler, E. Knorpp, T. F. Hsieh, and T. G. Wu. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115: 204-213 https://doi.org/10.1111/j.1439-0434.1986.tb00858.x
  23. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant prowth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
  24. Lim, H. S. and S. D. Kim 1995. The role and characterization og ${\beta}$-1,3-Glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri. J. Microbiol. 33: 295-304
  25. Lim, H. S. and S. D. Kim. 1997. Role of siderophore in biocontrol of Fusarium solani and enhanced growth response of Bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20
  26. Neilands, J. B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1: 9-14
  27. Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderphore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathol. 81: 930-935 https://doi.org/10.1094/Phyto-81-930
  28. Payne, S. M. 1994. Detection, isolation, and characterization of siderophore. Methods enzymology. 235: 329-344 https://doi.org/10.1016/0076-6879(94)35151-1
  29. Scher, F. M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil. suppressiveness to Fusarium wilt pathogens. Phytopathol. 72: 1567-1573 https://doi.org/10.1094/Phyto-72-1567
  30. Takeuchi, S., K. Hirayama, K. Ueda, H. Sasaki, and H. Yonehara. 1958. Blasticidin S, a new antibiotic. J. Antibiot. 11: 1-5
  31. Yun, G. H., E. T. Lee, and S. D. Kim. 2001. Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Appl. Microbial. Biotechnol. 29: 186-193