DOI QR코드

DOI QR Code

Effect of Stress Level on Strength Parameters of Cemented Sand

응력조건에 따른 고결모래의 강도정수 평가

  • Lee, Moon-Joo (Dept. of Civil and Environmental Engrg., Korea Univ.) ;
  • Choi, Sung-Kun (Dept. of Civil and Environmental Engrg., Korea Univ.) ;
  • Choo, Hyun-Wook (Dept. of Civil and Environmental Engrg., Korea Univ.) ;
  • Cho, Yong-Soon (Dept. of Civil and Environmental Engrg., Korea Univ.) ;
  • Lee, Woo-Jin (Dept. of Civil and Environmental Engrg., Korea Univ.)
  • 이문주 (고려대학교 사회환경시스템공학과) ;
  • 최성근 (고려대학교 사회환경시스템공학과) ;
  • 추현욱 (고려대학교 사회환경시스템공학과) ;
  • 조용순 (고려대학교 사회환경시스템공학과) ;
  • 이우진 (고려대학교 사회환경시스템공학과)
  • Published : 2007.05.31

Abstract

The factors affecting the geotechnical properties of cemented sands are known to be relative density, cementation level, stress level, and particle characteristics such as particle size, shape and surface conditions. It has been widely accepted that the friction angle of cemented sands is not affected by cementation while the cohesion of cemented sands was significantly influenced by cementation. The cementation that is a critical component of the strength of cemented sands will be broken with increasing confining pressure and great caution is required in evaluating the cohesion of cemented specimens due to their fragilities. In this study, a series of drained shear tests were performed with specimens at various cementation levels and confining stresses to evaluate the strength parameters of cemented sands. From the experiments, it was concluded that the cohesion intercept of cemented sand experiences three distinctive zone(cementation control zone, transition zone, and stress control zone), as the cementation level and the confining stress varies. In addition, for accurate evaluation of the strength parameters, the level of confining stress triggering the breakage of cementation bond should be determined. In this study, the relationship between the maximum confining stresses capable of maintaining the cementation bond intact and unconfined compression strength of the cemented sand was established.

고결모래의 거동은 고결정도, 상대밀도, 응력조건, 그리고 입자특성 등에 의해 영향을 받으며, 특히 고결모래의 강도에 영향을 끼치는 고결결합은 응력에 의해 파괴되기 때문에 고결모래의 강도정수는 응력조건을 고려하여 평가되어야 한다. 일반적으로 고결모래의 마찰각은 고결결합에 의해 영향을 받지 않기 때문에 미고결 상태의 마찰각과 동일한 반면, 점착력은 고결결합에 의해 증가하는 것으로 알려지고 있다. 따라서 본 연구에서는 석고를 고결유발제로 하는 고결시료를 조성하여 다양한 구속압 조건에서 배수전단시험을 실시함으로써, 구속압 변화에 따른 고결모래의 강도정수를 평가하였다. 실험결과 고결모래의 점착력은 고결정도와 구속압의 크기에 따라 고결지배구간, 천이구간, 응력지배구간에서 다르게 평가되었다. 또한 본 연구에서는 고결결합을 파괴시키지 않고 강도정수를 평가하기 위한 적정 구속압을 결정하기 위해 고결정도를 표현하는 일축압축강도와 고결결합을 파괴시키지 않는 최대 구속압의 관계를 결정하였다.

Keywords

References

  1. 이우진, 이문주, 최성근, 홍성진 (2006), '고결(Cementation)에 따른 모래의 비배수 전단거동 변화' 한국지반공학회논문집, Vol. 22, No.4, pp.85-94
  2. Abdulla, A.A. and Kiousis, P.D. (1997), 'Behavior of cemented sands- I.Tesging', Int. J. Numer. Analyt. Methods Geomech., Vol. 21, pp. 533-547 https://doi.org/10.1002/(SICI)1096-9853(199708)21:8<533::AID-NAG889>3.0.CO;2-0
  3. Ashari, E., Toll, D.G. and Haeri, S.M. (2003), 'Triaxial behaviour of a cemented gravely sand, Tehran alluvium', Geotech Geological Engrg., Vol.21, pp.1-28 https://doi.org/10.1023/A:1022934624666
  4. Chaney, R. and Mulilis, P.J. (1978), 'Suggested method for soil specimen remolding by wet raining', Geotech. Testing J. ASTM, Vol.1, No.2, pp.107-108 https://doi.org/10.1520/GTJ10378J
  5. Christopher, B.R., Atmatzidis, D.K. and Krizek, R.J. (1989), 'Laboratory testing of chemically grouted sand', Geotech. Testing J., ASTM, Vol.12, No.2, pp.109-118 https://doi.org/10.1520/GTJ10685J
  6. Clough, W.G., Iwabuchi J., Rad N.S., and Kuppusamy, T. (1989), 'Influence of cementation on liquefaction of sand', J. Geotech. Engrg., ASCE, Vol.115, No.8, pp.1102-1117 https://doi.org/10.1061/(ASCE)0733-9410(1989)115:8(1102)
  7. Clough, W.G., Sitar N., and Bachus R. (1981), 'Cemented sands under static loading', Geotech. Engrg. Div, ASCE, Vol.107, No.6, pp. 799-817
  8. Consoli, N.C., Rotta, G.V. and Prietto, P.D. M. (2000), 'Influence of curing under stress on the triaxial response of cemented soils', Geotechnique, Vol.50, No.1, pp.99-105 https://doi.org/10.1680/geot.2000.50.1.99
  9. Coop, M.R. and Atkinson, J.H. (1993), 'The mechanics of cemented carbonate sands', Geotechnique, Vol.43, No.1, pp.53-67 https://doi.org/10.1680/geot.1993.43.1.53
  10. Cuccovillo, T. and Coop, M.R. (1999), 'On the mechanics of structured sands', Geotechnique, Vol.49, No.6, pp.741-760 https://doi.org/10.1680/geot.1999.49.6.741
  11. Haeri, S.M., Hosseini, S.M., Toll, D.G. and Yasrebi, S.S. (2005), 'The behaviour of an artificially cemented sandy gravel', Geotech. Geological Engrg., Vol.23, pp.537-560 https://doi.org/10.1007/s10706-004-5110-7
  12. Huang, J.T. and Airey, D.W. (1993), 'Effects of cement and density on an artificially cemented sand', Geotechnical engineering of hard soils-soft rocks, Anagnostopoulos et al., eds., A. A. Balkema, Rotterdam, The Netherlands, Vol.1, pp.553-560
  13. Huang, J.T. and Airey, D.W. (1998), 'Properties of artificially cemented carbonate sand', J. Geotech. Engrg., ASCE, Vol.124, No.6, pp.492-499 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)
  14. Ismael, N.F. (2000), 'Influence of artificial cementation on the properties of Kuwaiti sands', Kuwait J. Sci. Eng., Vol.27, pp.59-75
  15. Ismail, M.A., Joer, H.A., Sim, W.H., and Randolph. M.F. (2002a), 'Effect of cement type on shear behavior of cemented calcareous soil', J. Geotech. Engrg., ASCE, Vol.128, No.6, pp.520-529 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  16. Ismail, M.A., Joer, H.A., and Randolph, M.F. (2002b), 'Cementation of porous materials using calcite', Geotechnique, Vol. 52, No.5, pp.313-324 https://doi.org/10.1680/geot.52.5.313.38709
  17. Kuerbis, R. and Vaid, Y.P. (1988), 'Sand sample preparation - the slurry deposition method', Soils and Foundations, Vol.28 No.4, pp.107-118
  18. Miura, S., Toki, S. and Tanizawa, F. (1984), 'Cone penetration characteristics and its correlation to static and cyclic deformation-strength behaviors of anisotropic sand', Soils and Foundations, Vol.24, No.2, pp.58-74
  19. Puppala, A.J., Acar, Y.B. and Tumay, M.T. (1995), 'Cone penetration in very weakely cemented sand', J. Geotech. Engrg., ASCE, Vol.121, No.8, pp.589-600 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589)
  20. Rotta, G.V., Consoli, N.C., Prietto, P.D.M., Coop, M.R. and Graham, J. (2003), 'Isotropic yielding in an artificially cemented soil cured under stress', Geotechnique, Vol.53, No.5, pp.493-501 https://doi.org/10.1680/geot.53.5.493.37508
  21. Saxena, S.K. and Lastrico, R.M. (1978), 'Static properties of lightly cemented sands', Geotech. Engrg., ASCE, Vol.104, No.12, pp. 1449-1464
  22. Schnaid, F. Prietto, P.D.M. and Consoli, N.C. (2001), 'Characterization of cemented sand in triaxial compression', J. Geotech. Engrg., ASCE, Vol.127, No.10, pp.857-868 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
  23. Vaid, Y.P. and Nequssey, D. (1984), 'Relative densty of air and water pluviated sand', Soils and Foundations, Vol.24, No.2, pp. 101-105
  24. Wadell, H. (1932) Volume, shape and roundness of rock particles, J. Geol. Vol.40, pp.443-461 https://doi.org/10.1086/623964
  25. Yun, T.S. and Santamarina, J.C. (2005), 'Decementation, softening, and collapse: changes in small-strain shear stiffness in k0 loading', J. Geotech. Engrg., ASCE, Vol.131, No.3, pp.350-358 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350)
  26. Zhu, F., Clark, J.I. and Paulin, M.J. (1995), 'Factor affecting atrest lateral stress in artificially cemented sands', Can. Geotech. J., NRC, Vol.32, pp.195-203 https://doi.org/10.1139/t95-023