DOI QR코드

DOI QR Code

Magnetic Actuator for a Capsule Endoscope Navigation System

  • Published : 2007.06.30

Abstract

The authors propose a magnetic actuator for use as a navigation system for capsule endoscopes. The actuator is composed of a capsule dummy, a permanent magnet inside the capsule, and an external spiral structure. The device rotates and propels wirelessly when exposed to an external rotational magnetic field. In this study we measured the effect of the spiral shape on the velocity and thrust force properties. According to our experimental results, the actuator obtained a maximum velocity and thrust force when the spiral angle was set at 45 degrees, the number of spirals was set at 4, and the spiral-height was set at 1-mmf. We also conducted a motion test in the large intestine of a pig placed on a 30 degrees slope. The actuator passed through a 700 mm length of the intestine in about 300 s. The device also managed to travel up and down the 30 degrees slope with no difficulty whatsoever. Our results demonstrate the great potential of this actuator for use as a navigation system for capsule endoscopes.

Keywords

References

  1. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain 'Wireless capsule endoscopy', Nature 405, 417 (2000)
  2. OLYMPUS Corporation http://www.olympus.co.jp/
  3. L. Phee, D. Accoto, A. Menciassi, C. Stefanini, M. C. Carrozza, and P. Dario, 'Analysis and Development of Locomotion Devices for the Gastrointestinal Tract', IEEE Trans. Biomed. Enging. 49, 613-616 (2002) https://doi.org/10.1109/TBME.2002.1001976
  4. H. D. Hoeg, A. B. Slatkin, J. W. Burdick, and W. S. Grundfest, 'Biomechanical Modeling of the Small Intestine as Required for the Design and Operation of a Robotic Endoscope', Proc. 2000 IEEE Int. Conf. on Robotics and Automation 1599-1606 (2000)
  5. K. Ikeuchi, K. Yoshinaka, and N. Tomita, 'Low invasive propulsion of medical devices by traction using mucus', Wear 209, 179-183 (1997) https://doi.org/10.1016/S0043-1648(97)00006-9
  6. T. Honda, K. I. Arai, and K. Ishiyama, 'Micro-swimming mechanisms propelled by external magnetic field', IEEE Trans. Magn. 32, 5085-5087 (1996) https://doi.org/10.1109/20.539498
  7. K. Ishiyama, M. Sendoh, A. Yamazaki, and K. I. Arai, 'Swimming micro-machine driven by magnetic torque', Sensors and Actuators A-91, 141-144 (2001)
  8. M. Sendoh, K. Ishiyama, and K. I. Arai, 'Direction and Individual Control of Magnetic Micromachine', IEEE Trans. Magn. 38, 3356-3358 (2002) https://doi.org/10.1109/TMAG.2002.802306
  9. M. Sendoh, K. Ishiyama, and K. I. Arai, 'Fabrication of Magnetic Actuator for Use in a Capsule Endoscope', IEEE. Trans. Magn. 39, 3232-3234 (2003) https://doi.org/10.1109/TMAG.2003.816731
  10. A. Chiba, M. Sendoh, K. Ishiyama, and K. I. Arai, 'Basic Characteristics of a Magnetic Actuator for Capsule Endoscope', Trans. Jpn. Soc. Med. Biol. Eng. 42, 313-317 (2004)
  11. A. Chiba, M. Sendoh, K. Ishiyama, and K. I. Arai, 'Moving of a Magnetic Actuator for a Capsule Endoscope in the Intestine of a Pig', J. Magn. Soc. Jpn. 29, 343-346 (2005) https://doi.org/10.3379/jmsjmag.29.343

Cited by

  1. Vibration Suppression of Flexible Beam Using Electromagnetic Shunt Damper vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2020549
  2. Performance of Cableless Magnetic In-Piping Actuator Capable of High-Speed Movement by Means of Inertial Force vol.3, pp.1687-8140, 2011, https://doi.org/10.1155/2011/485138
  3. Movement of a Cableless In-Piping Magnetic Actuator With a New Propulsion Module vol.48, pp.11, 2012, https://doi.org/10.1109/TMAG.2012.2201919
  4. Effect of Battery on Moving Properties of Cableless In-Piping Magnetic Actuator vol.05, pp.04, 2013, https://doi.org/10.4236/jemaa.2013.54023
  5. Wireless In-Piping Actuator Capable of High-Speed Locomotion by a New Motion Principle vol.18, pp.4, 2013, https://doi.org/10.1109/TMECH.2012.2201496
  6. A Pushing Force Mechanism of Magnetic Spiral-type Machine for Wireless Medical-Robots in Therapy and Diagnosis vol.49, pp.7, 2013, https://doi.org/10.1109/TMAG.2012.2237544
  7. Generating Rotating Magnetic Fields With a Single Permanent Magnet for Propulsion of Untethered Magnetic Devices in a Lumen vol.30, pp.2, 2014, https://doi.org/10.1109/TRO.2013.2289019
  8. Multiscale Magnetic Spiral-Type Machines for Fluid Manipulation vol.50, pp.11, 2014, https://doi.org/10.1109/TMAG.2014.2323710
  9. Cableless In-piping Magnetic Actuator System Capable of Inspection Over Long Distances vol.50, pp.11, 2014, https://doi.org/10.1109/TMAG.2014.2317491
  10. Fabrication of Magnetic Microactuators for Cytology Brush Built into Capsule Endoscope vol.98, pp.4, 2015, https://doi.org/10.1002/ecj.11648
  11. Finding Optimal Actuation Configuration for Magnetically Driven Capsule Endoscopy Based on Genetic Algorithm vol.36, pp.6, 2016, https://doi.org/10.1007/s40846-016-0180-6