한국 서해 경기만 연안역에서 수질환경의 시.공간적 변화 특성과 조절 요인

Temporal-spatial Variations of Water Quality in Gyeonggi Bay, West Coast of Korea, and Their Controlling Factor

  • 임동일 (한국해양연구원 남해연구소) ;
  • 노경찬 (한국해양연구원 남해연구소) ;
  • 장풍국 (한국해양연구원 남해연구소) ;
  • 강선미 (한국해양연구원 남해연구소) ;
  • 정회수 (한국해양연구원 한중해양과학공동연구소) ;
  • 정래홍 (국립수산과학원 해양환경연구본부) ;
  • 이원찬 (국립수산과학원 해양환경연구본부)
  • 발행 : 2007.06.30


Temporal (seasonal) and spatial distributions and variations of various physico-chemical factors (salinity, temperature, pH, DO, COD, SPM, POC, silicate, DIP, DIN) in surface and bottom waters were studied in the coastal environment with typical macro-tidal range and monsoonal weather condition, Gyeonggi Bay, west coast of Korea. Spacial distribution patterns of these factors were generally similar to each other, and appeared to be inversely related to the distribution pattern of salinity, suggesting that water quality of the study area was primarily controlled by the physical mixing process of Han-River freshwater with nearby coastal seawater. During flooding season, silicate- and nitrogen-rich Han River water directly flowed into offshore as far as $20\sim30\;km$ from the river mouth, probably causing serious environmental problems such as eutrophication and unusual and/or noxious algal bloom, etc. Except the surface water during summer flooding season, high concentrations of nutrients appeared generally in dry season, whereas low values in spring, possibly because of the occurrence of spring phytoplankton bloom. On the other hand, nutrient flux through the estuary seems to be primarily depending on river discharge, sewage discharge and agricultural activities, especially during the rainy season. Also, nutrients in this coastal waters are considered to be supplied from the sediments of tidal-flats, which developed extensively around the Han-River mouth, especially during fall and winter of dry and low discharge seasons, possibly due to the stirring of tidal flat sediments with highly enriched pore-water nutrients by storm. And also, COD and DIN concentrations in the study area consistently increased during the last 20 years, probably because of agricultural activities and increasing discharge of industrial and domestic wastes.


  1. 권기영, 문창호, 양한섭. 2001a. 섬진강 하구역에서 염분경사에 따른 영양염의 거동. 한수지, 34, 199-206
  2. 권기영, 이평강, 박철, 문창호, 박미옥. 2001b. 섬진강 하구역에서 염분경사에 따른 동-식물플랑크톤의 현종량 및 종조성. 한국해양학회지 바다, 6, 93-102
  3. 권오윤, 정승원, 이진환. 2006. 한강 하류의 환경학적 연구 VIII. 식물플랑크톤 군집의 변화에 미치는 물리-화학적 요인. Kor. J. Limnol., 39, 340-351
  4. 기상청. 2006. 기상월보 2006
  5. 김나영. 2000. 경기만에서 주요 수질변수들의 분포 특성 및 지화학적 조절요인. 인하대학교 석사학위논문. 104 p
  6. 김동선, 임동일, 전수경, 정회수. 2005. 한국 서해 천수만의 화학적 수질특성과 부영양화. Ocean and Polar Res., 27, 45-58
  7. 김성수, 고우진, 조영조, 이필용, 전경암. 1998. 1996년 여름철 남해 표층수의 이상저염수 현상과 영양염류의 분포 특성. 한국해양학회지 바다, 3, 165-169
  8. 김종구, 김양수. 2002. 새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용. 1. 해역의 수질 특성 및 저질의 용출 부하량 산정. 한국수산학회지, 35, 348-355
  9. 김학균. 1989. 마산만의 편모조 적조의 발생과 환경특성. 국립수산진흥원 연구보고서, 43, 1-40
  10. 양재삼, 최현용, 정해진, 정주영, 박종규. 2000. 전남 고흥 해역의 유해성 적조의 발생연구: 1. 물리-화학적인 특성. 한국해양학회지 바다, 5, 16-26
  11. 유영두, 정해진, 심재형, 박재연, 이경재, 이원호, 권효근, 배세진, 박종규. 2002. 전북 새만금 남쪽 해역의 유해성 적조 발생 연구 1. 1999년도 여름-가을 식물플랑크톤의 시 공간적 변화. 한국해양학회지 바다, 7, 129-139
  12. 이동섭. 1999. 여름과 겨울철 남해의 영양염 분포 특성. 한국해양학회지, 4, 371-382
  13. 이석우. 1972. 인천항 조석, 조류 및 조량에 대하여. 한국해양학회지, 7, 86-97
  14. 이종현, 이정석, 김범수, 이창복, 고철환. 1998. 경기만 퇴적물의 중금속 분포 특성. 한국해양학회지 바다, 3, 103-111
  15. 이진환, 정승원. 2004. 한강하류의 환경학적 연구 VII. 식물플랑크톤군집의 장기간 변화와 전망. Algae, 19, 321-327
  16. 인하대해양과학기술연구소. 1993. 연안 해역 오염도 조사-인천지역의 수질보전대책 수립을 위한 실태조사용역보고서. 인천시. 520 p
  17. 임동일, 엄인권, 전수경, 유재명, 정회수. 2003. 한국 남해 연안역에서 여름 홍수기에 형성된 연안 염하구 환경의 물리-화학적 특성. 한국해양학회지 바다, 8, 151-163
  18. 장풍국, 이원제, 장민철, 이재도, 이우진, 장만, 황근춘, 신경순. 2005. 광양만에서 무기 영양염의 시공간적 분포를 조절하는 요인. Ocean and Polar Res., 27, 359-379
  19. 정해진, 박종규, 최현용, 양재삼, 심재형, 신윤근, 이원호, 김형섭, 조경제. 2000. 전남 고흥 해역의 유해성 적조의 발생연구 2: 1997년도 식물플랑크톤의 시공간적 변화. 한국해양학회지 바다, 5, 27-36
  20. 해양수산부. 2005. 해양생태계 기본조사 연구(I). 361 p
  21. Billen, G., C. Lancelot, and M. Mayberk. 1991. N, P, Si retention along the aquatic continuum from land to ocean. p. 19-44. In: Ocean Margin Processes in Global Change. eds. by R.F.C. Matoura, J.M. Martin, and R. Wollast. John Wiley & Sons, New York
  22. Bricker, S.B., C.G. Clement, D.E. Pirhalla, S.P. Orland, and D.R.G. Farrow. 1999. National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation's Estuaries. NOAA, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science. Silver Spring, MD, USA. 71 p
  23. Chester, R. 1990. Marine Geochemistry. Unwin Hyman, London. 689 p
  24. Edmond, J.M., A. Spivack, B.C. Grant, H. Ming-Hui, C. Zexiam, C. Sung, and Z. Xiushau. 1985. Chemical dynamics of the Changjiang estuary. Cont. Shelf. Res., 4, 17-36
  25. Fisher, T.R., E.R. Peele, J.W. Ammerman, and L. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82, 51-63
  26. Graneli, E.K., U. Wallstrom, W. Laesson, W. Graneli, and R. Elmgren. 1990. Nutrient limitation of phytoplankton of primary production in the Baltic Sea Area. Ambio, 19, 142-151
  27. Hashimoto, T. and S. Nakano. 2003. Effect of nutrient limitation on abundance and growth of phytoplankton in a Japanese Pearl farm. Mar. Ecol. Prog. Ser., 258, 43-50
  28. Hecky R.E. and P. Kilham. 1998. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effect of enrichment. Limnol. Oceanogr., 33, 796-822
  29. Howarth R.W., R. Marino, and J.J. Cole. 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystem. 2. Biolgeochemical controls. Limnol. Oceanogr., 33, 688-701
  30. Humborg, C., V. Ittekkot, A. Cociasu, and B.V. Bodungen. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385-388
  31. Meybeck, M. 1982. Carbon, nitrogen, and phosphorus tramsport by world rivers. Am. J. Sci., 282, 402-450
  32. Pearsall, W.H. 1930. Phytoplankton in English lakes. I. The proportions in the waters of some dissolved substances. J. Ecol., 20, 241-262
  33. Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of sea-water. p. 26-77. In: The Sea, v. 2. ed. by M.N. Hill. Wilely Interscience, New York
  34. Simpson, J.H., P.B. Tett, M.L. Argote-Espinoza, A. Edwards, K.J. Jones, and G. Savidge. 1982. Mixing and phytoplankton growth around an island in a stratified sea. Cont. Shelf. Res., 1, 15-31
  35. Tappin, A.D. 2002. An examination of the fluxes of nitrogen and phosphorus in the temperate and tropical estuaries: current estimates and uncertainties. Estuar. Coast. Shelf Sci., 55, 885-901
  36. Thomas, C.M. 1992. Benthic-Pelagic Interactions: Nutrient and oxygen dynamics. p. 61-66. In: Oxygen Dynamics in the Chesapeake Bay. Maryland Sea Grant College, Maryland
  37. Tilman, D., S.S. Kilham, and P. Kilham. 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst., 13, 349-372
  38. Twomey, L. and P. Thompson. 2001. Nutrient limitation of phytoplankton in seasonally open bar-built estuary: Wilson Inlet, Western Australia. J. Phycol., 37, 16-29
  39. Wafar, M.V.M., P. LeCorre, and J.L. Birren. 1983. Nutrients and primary production in permanently well mixed temperate coastal waters. Estuar. Coast. Shelf Sci., 17, 431-446
  40. Wong, G.T.F., G.C. Gong, K.K. Liu, and S.C. Pai. 1998. Excess nitrate in the East China Sea. Estuar. Coast. Shelf. Sci., 46. 411-418
  41. Yin, K., P.Y. Quin, M.C.S. Wu, J.C. Chen, L. Huang, X. Song, and W. Jian. 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Mar. Ecol. Prog. Ser., 221, 17-28
  42. Yoshida, Y. 1973. Changes in biological production in low trophic levels. p. 92-103. In: Fisheries Seires, 1. Koseisha Koseikaku, Tokyo
  43. Yu, Z., X. Song, W. Huo, and B. Zhang. 2001. Blooming of Skeletonema coastatum in relationship to environmental factors in Jiazhou Bay. The Yellow Sea, 7, 84-89

피인용 문헌

  1. Effects of Nutrient Property Changes on Summer Phytoplankton Community Structure of Jangmok Bay vol.32, pp.2, 2010,
  2. Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity vol.146, 2014,
  3. Tidal and Seasonal Variations of Nutrients in Keunso Bay, the Yellow Sea vol.30, pp.1, 2008,
  4. Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining vol.20, pp.2, 2014,
  5. Impact of inland pollution sources on the bacteriological water quality of the Southern Ganghwado Bay Area, South Korea vol.14, pp.1, 2017,
  6. Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea vol.29, pp.4, 2007,
  7. Water Quality Characteristics Along Mid-western Coastal Area of Korea vol.30, pp.4, 2008,
  8. Coastal Eutrophication caused by Effluent from Aquaculture Ponds in Jeju vol.19, pp.4, 2013,
  9. Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea vol.19, pp.6, 2013,
  10. Distribution of Clay Minerals in Surface Sediments of Kunsan Basin, Yellow Sea and their Transport Pathway vol.20, pp.4, 2015,