Inhibitory Activity of Nitric Oxide Synthase and Peroxynitrite Scavenging Activity of Extracts of Perilla frutescens

들깨 잎 추출물의 Nitric Oxide Synthase 저해활성 및 Peroxynitrite 소거활성

  • Kim, Jae-Yeon (College of Pharmacy, Sookmyung Women's University) ;
  • Kim, Ji-Sun (College of Pharmacy, Sookmyung Women's University) ;
  • Jung, Chan-Sik (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Jin, Chang-Bae (Division of Life Sciences, Korea Institute of Science & Technology (KIST)) ;
  • Ryu, Jae-Ha (College of Pharmacy, Sookmyung Women's University)
  • Published : 2007.06.30

Abstract

Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO$^-$), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. We tried to evaluate the effects of two kinds of varieties of Perilla frutescens var japnica Hara on the NO production in lipopolysaccharide (LPS)-activated microglia. The perilla cultivars of Namcheondeulkkae (NC) and Boradeulkkae (BR) were developed by pure line from the local variety and by a cross between 'deulkkae' and 'chajogi', respectively. Spirit, hexane, chloroform and butanol fractions of the leaves of NC and BR inhibited the production of NO in LPS-activated microglia. The fractions of BR showed stronger activity than NC and the spirit extracts was the most potent in both cultivars. The solvent fractions of BR suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells. Moreover, the extracts of NC and BR showed the activity of peroxynitrite scavenging in cell free bioassay system. These results imply that Namcheondeulkkae and Boradeulkkae might have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

Keywords

References

  1. Lee, J. I., Han, E. D., Lee, S. T. and Park, H. W. (1986) Study on the evaluation of oil quality and the differences of fatty acid composition between varieties in perilla (Perilla frutescens Britton var. japonica Hara ). Korean J. Breeding 18:228-233
  2. Park, H.-S., Ahn, B. and Yang, C.-B. (1990) Studies on the functional properties of sesame and perilla protein isolate. Korean J. Food Sci. Technol. 22: 350-356
  3. Choung, M. G. (2005) Comparison of major characteristics between seed perilla and vegetable perilla. Korean J. Crop Sci. 50: 171-174
  4. Kim, T. J. (1996) Natural plant resources in Korea, Seoul National University Press
  5. Yamazaki, M. and Saito, K. (2006) Isolation and characterization of anthocyanin 5-O-glucosyltransferase in Perilla frutescens var. crispa by differential display. Methods Mol. Biol. 317: 255-266
  6. Han, H.S., Park, J.H., Choe, H.J., Son, J.H., Kim, Y.H., Kim, S. and Choe, C. (2004) Biochemical analysis and physiological activity of perilla leaves. Korean J. Food Culture 19:94-105
  7. Sakai, T. and Hirose, Y. (1969) Farnesenes isolated from the volatile oil of Perilla frutescens f. viridis Makino. Bull. Chem. Soc. Jpn. 42: 3615 https://doi.org/10.1246/bcsj.42.3615
  8. Lee, K.-I., Rhee, S.-H., Kim, J.-O., Chung, H.-Y. and Park, K.-Y. (1993) Antimutagenic and antioxidative effects of perilla leaf extracts. J. Korean Soc. Food. Nutr. 22: 175-180
  9. Park, K.-Y., Lee, K.-I. and Rhee, S.-H. (1992) Inhibitory effect of green-yellow vegetables on the mutagenicity in salmonella assay system and on the growth of AZ -521 human gastric cancer cells. J. Korean Soc. Food Nutr. 21: 149-153
  10. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. and Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 84: 9265-9269
  11. Angus, J. A. and Cocks, T. M. (1989) Endothelium-derived relaxing factor. Pharmacol. Ther. 41: 303-352 https://doi.org/10.1016/0163-7258(89)90112-5
  12. Boissel, J. P., Schwarz, P. M. and Forstermann, U. (1998) Neuronal-type NO synthase: transcript diversity and expressional regulation. Nitric Oxide 2: 337-349 https://doi.org/10.1006/niox.1998.0189
  13. Busse, R. and Fleming, I. (1995) Regulation and functional consequences of endothelial nitric oxide formation. Ann. Med. 27: 331-340 https://doi.org/10.3109/07853899509002586
  14. Moilanen, E. and Vapaatalo, H. (1995) Nitric oxide in inflammation and immune response. Ann. Med. 27: 359-367 https://doi.org/10.3109/07853899509002589
  15. Hibbs, J. B. Jr., Taintor, R. R., Vavrin, Z. and Rachlin, E. M. (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157: 87-94 https://doi.org/10.1016/S0006-291X(88)80015-9
  16. Meda, L., Cassatella, M. A., Szendrei, G. I., Otvos, L. Jr., Baron, P., Villalba, M., Ferrari, D. and Rossi, F. (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374: 647-650 https://doi.org/10.1038/374647a0
  17. Pfeilschifter, J., Eberhardt, W., Hummel, R., Kunz, D., Muhl, H., Nitsch, D., Pluss, C. and Walker, G. (1996) Therapeutic strategies for the inhibition of inducible nitric oxide synthasepotential for a novel class of anti-inflammatory agents. Cell Biol. Int. 20: 51-58 https://doi.org/10.1006/cbir.1996.0008
  18. Salvemini, D., Misko, T. P., Masferrer, J. L., Seibert, K., Currie, M. G. and Needleman, P. (1993) Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. U.S.A. 90:7240-7244
  19. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178: 749-754 https://doi.org/10.1084/jem.178.2.749
  20. Wolfe, T. A. and Dasta, J. F. (1995) Use of nitric oxide synthase inhibitors as a novel treatment for septic shock. Ann. Pharmacother. 29: 36-46 https://doi.org/10.1177/106002809502900108
  21. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266: 4244-4250
  22. Haenen, G. R., Paquay, J. B., Korthouwer, R. E. and Bast, A. (1997) Peroxynitrite scavenging by flavonoids. Biochem. Biophys. Res. Commun. 236: 591-593 https://doi.org/10.1006/bbrc.1997.7016
  23. Gehrmann, J., Matsumoto, Y. and Kreutzberg, G. W. (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 20: 269-287 https://doi.org/10.1016/0165-0173(94)00015-H
  24. McGeer, P. L. and McGeer, E. G. (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21: 195-218 https://doi.org/10.1016/0165-0173(95)00011-9
  25. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [$^{15}N$]nitrate in biological fluids. Anal. Biochem. 126: 131-138 https://doi.org/10.1016/0003-2697(82)90118-X
  26. Kooy, N. W. and Royall, J. A., Ischiropoulos, H. and Beckman, J. S. (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16: 149-156 https://doi.org/10.1016/0891-5849(94)90138-4
  27. Wang, J. and Mazza, G. (2002) Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agric. Food Chem. 50: 850-857 https://doi.org/10.1021/jf010976a
  28. 농작물 직무육성 신품종선정위원회 결과 보고서 (2001) 351-354, 농촌진흥청
  29. Nagatsu, A., Tenmaru, K., Matsuura, H., Murakami, N., Kobayashi, T., Okuyama, H. and Sakakibara, J. (1995) Novel antioxidants from roasted perilla seed. Chem. Pharm. Bull. (Tokyo) 43: 887-889 https://doi.org/10.1248/cpb.43.887
  30. Szabo, C. (1996) The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 6: 79-88 https://doi.org/10.1097/00024382-199608000-00001