Prediction of Watershed Erosion and Deposition Potentials

유역침식 및 퇴적 잠재능 예측모델 개발

  • Son, Kwang-Ik (School of Civil & Environmental Eng., Yeungnam Univ.)
  • Published : 2007.03.31

Abstract

A model for predicting potentials of land erosion and deposition over a natural basin was developed based on the mass balance principle. The program was developed based on sediment mass balance principle for each cell in a GIS. Sediment yield from a cell was estimated with RUSLE. The outflow sediment from a cell was calculated by multiplying the sediment yield of the cell by the sediment delivery ratio (SDR) of the cell. The outflow sediment from the upstream cell becomes the incoming sediment of the downstream cell. Therefore the erosion and deposition potential of each cell could be determined from the sediment mass balance i.e., the difference between the incoming and outflow of sediments of each cell. The developed model was validated by comparing the predicted sediment yields for three basins with measured data.

본 연구에서는 토사에 대한 질량보존의 법칙을 이용하여 자연유역 내 토양의 침식 및 퇴적 잠재능을 산정할 수 있는 모델을 개발하였다. 이 프로그램은 각 셀 별 토사에 대한 질량보존의 법칙을 적용하여 GIS환경하에서 구동 가능하도록 구성되어있으며 셀 별 토사발생량은 RUSLE 공식을 이용하여 산정하였다. 토양의 침식 및 퇴적 잠재능은 토사의 유출량과 유입량의 차에 의해 각 셀이 침식되거나 퇴적된다는 질량보존의 법칙을 이용하여 산정하였다. 질량보존의 법칙을 적용하기 위한 셀 별 토사유출량은 토사발생량과 토사전달률을 곱하여 산정하였으며 이 토사 유출량이 흐름방향 알고리즘에 의해 결정되는 하류 셀의 토사유입량이 된다. 본 연구에서 개발된 모델을 이용하여 국내 소유역에 대해 적용하였으며 그 결과를 실측치와 비교함으로써 모델을 검증하였다.

Keywords

References

  1. Elliot, W. J., Hall, D. E. & Scheele, D. L. (2000). WEPP Interface for Disturbed Forest and Range Runoff, Erosion and Sediment Delivery, USDA Forest Service Rocky Mountain Research Station and San Dimas Technology and Development Center
  2. Ferro, V. & Minacapilli, M. (1995) Sediment delivery processes at basin scale. Hydrol. Sci. 40(6), pp. 703-717 https://doi.org/10.1080/02626669509491460
  3. Ferro, V., Porto, P. & Tusa, G. (1998) Testing a distributed approach for modelling sediment delivery. Hydrol. Sci. 43 (3), pp. 425-442 https://doi.org/10.1080/02626669809492136
  4. Hickey, R, Smith, A. & Jankowski, P. (1994) Slope length calculations from a DEM within ARC/INFO GRID: Computers, Environment and Urban Systems 18 (5), pp. 365-380 https://doi.org/10.1016/0198-9715(94)90017-5
  5. Quinn. P., Beven, K., Chevaller, P. & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using Digital Terrain Models. Hydrol. Processes 5, 59-79
  6. Son, K. I. (2003). Evaluation of LS Parameters in USLE using GIS. J. Korean Soc. Civil Engnrs 23, (4B), pp. 281-287
  7. Son, K. I. (2001). Applicability examination of the RUSLE sediment yield prediction equations in Korea. J. Korea Water Resour. Assoc. 34 (3), pp. 199-207
  8. Swift, L.W. Jr. (2000). Equation to dissipate sediment from a grid cell downslope. USDA Forest Service, USA
  9. Wischmeier W. H. & Smith, D. D. (1965). Predicting rainfall erosion losses from cropland East of the Rocky Mountains. US. Dep. Agric. Agricultural Research service. Agricultural Handbook. no. 282
  10. 植松久芳, 白石品二(2006). 氣象情報 . 防災情報の利活用促進するために, 2006年度秋季大會豫 稿集, 日本氣象學會, pp. 200
  11. 植松久芳, 白石品二(2006). 氣象情報 . 防災情報の利活用促進するために, 2006年度秋季大會豫 稿集, 日本氣象學會, pp. 200