Prediction of Parthenogenetic Developmental Potential by Polar Body Extrusion and First Cleavage on In Vitro Maturation and Development of Porcine Follicular Oocytes

돼지 난모 세포의 Ethanol 처리에 의한 단위 발생에 있어서 극체 방출란과 분할란 선별에 따른 배발달율 비교

  • Kim, H.J. (National Institute of Animal Science, RDA) ;
  • Cho, S.R. (National Institute of Animal Science, RDA) ;
  • Choe, J.Y. (National Institute of Animal Science, RDA) ;
  • Choi, S.H. (National Institute of Animal Science, RDA) ;
  • Han, M.H. (National Institute of Animal Science, RDA) ;
  • Son, D.S. (National Institute of Animal Science, RDA) ;
  • Lee, S.S. (National Institute of Animal Science, RDA) ;
  • Sang, B.D. (National Institute of Animal Science, RDA) ;
  • Ryu, I.S. (National Institute of Animal Science, RDA) ;
  • Kim, I.C. (National Institute of Animal Science, RDA) ;
  • Kim, S.J. (National Institute of Animal Science, RDA) ;
  • Kim, I.H. (College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, S.K. (College of Veterinary Medicine, Chungnam National University)
  • Published : 2007.06.30

Abstract

The objective of this study was carried out to examine the selection effects of in vitro matured porcine follicular oocytes with polar body extrusion and early cleavage as non-invasive marker to know the developmental competence in advance. The porcine oocytes matured for 48 h were examined the polar body extrusion. The examined oocytes were matured for additional $16{\sim}18h$ and activated with 7% ethanol and cultured in $5{\mu}g/ml$ cytochalasin B for 5 h for diploid formation. The treated oocytes were cultured and examined the cleavage after 48 h and continued culturing for 5 days. The oocytes of 21.9% were discarded in morphological selection and 32.1% oocytes were discarded by failure of first polar body extrusion. The selected oocytes were matured and activated and then after 48 h the cleavage rates were examined. In morphologically selected oocytes, 15.8% oocytes were not cleaved and 52.6% oocytes were normally cleaved and 31.6% oocytes were hyper-cleaved over 8-cell stage. However in the first polar body extruded oocytes, 7.1% oocytes were not cleaved and 73.1% oocytes were normally cleaved and 19.8% oocytes were hyper-cleaved. The morphologically selected embryos that not cleavage-selected were developed in 16.7% up to blastocyst and the morphologically selected and cleavage-selected embryos were developed in 31.7%. The polar body extruded oocytes that were not carried out cleavage selection were developed in 39.0% and the polar body extruded and cleavage-selected embryos were developed 49.0%. The first cleavage timing was examined with 12 h interval after activation. In $0{\sim}12,\;12{\sim}24,\;24{\sim}36,\;and\;36{\sim}48h$ intervals, 4.1%, 68.6%, 19.1%, and 2.3% oocytes were cleaved and 5.9% oocytes were not cleaved until 48 after activation. The cleaved oocytes in each interval were cultured and developed upto blastocyst with 0, 39.1, 9.5, and 0%, respectively. This results suggests that polar body extruded and cleaved at $12{\sim}36h$ embryo has higher developmental potential than the others.

본 연구에서 돼지 난포란에서 채취된 난모 세포들을 체외성숙 후 형태적으로 선별하거나 극체 방출란을 선별하여 활성화 처리 후 48시간째에 분할란을 선별할 때 배발달율이 어느정도 향상되는지를 검토하였다. 난모 세포를 48시간 성숙 배양 후 형태적 선별과 극체의 방출 유무를 검사하고, 선별된 난모 세포들을 $16{\sim}18$시간 추가 배양한 후 7% ethanol로 활성화시키고 $5{\mu}g/ml$ cytochalasin B에 5시간 노출 후 PZM-5 배 양액으로 7일간 배양하였으며, 배양 중 4일째 5% FBS를 추가하였다. 48시간 성숙 후 형태적으로 선별하였을 때, 21.9%가 제거되고 78.1%가 선별되었으며, 극체 방출란을 선별하였을 때, 32.1%가 제거되고, 67.9%가 선별되었다. 형태적으로 선별한 난자를 활성화 처리하여 48시간째에 분할율을 검사하였을 때, 15.8%가 분할하지 않았으며, 52.6%가 정상 분할하였고, 31.6%가 과분할하였으며, 극체 방출란을 선별하여 활성화 처리 후 분할율을 검사하였을 때 7.1%가 분할하지 않았으며, 73.1%가 정상 분할하였고, 19.8%가 과분할하였다. 체외 성숙된 난모세포를 형태적으로 선별하고 활성화 처리 후 분할란을 선별하지 않았을 때, 16.7%가 배반포기로 발달하였고, 형태적으로 선별하고 분할란을 추가로 선별해 배양했을 때 31.7%가 배반포기로 발달하였으며, 극체 방출란만을 선별하여 활성화 처리 후 분할란을 선별하지 않았을 때 39.0%가 배반포기로 발달하였고, 극체 선별과 분할란 선별을 하였을 때 배반포기 발달율이 49.0%에 이르렀다. 48시간째 미분할 난자와 정상 분할 난자, 과분할 난자를 배양하였을 때 48시간째 미분할 난자는 배반포기로 발달하지 못했으며, 정상 분할 난자는 42.5%, 과분할 난자는 4.5%가 배반포기로 발달하였다. 분할하는 시기를 활성화처리 후 12시간 간격으로 조사하였을 때 $0{\sim}12$시간 사이에 4.1%가 분할하였고, $12{\sim}24$시간 사이에 68.6%, $24{\sim}36$ 시간 사이에 19.1%, $36{\sim}48$시간 사이에 2.3%, 48시간까지 미분할 난자가 5.9%였으며, $0{\sim}12$시간 사이에 분할한 난자나 $36{\sim}48$시간 사이에 분할한 난자에서 배반포기로 발달한 난자는 없었으며, $12{\sim}24$시간 사이에 분할한 난자의 39.1%, $24{\sim}36$시간 사이에 분할한 난자의 9.5%가 배반포기로 발달하였다. 이상의 결과로 극체 방출란만을 선별하여 $12{\sim}36$시간 사이에 분할하는 난자들만을 선별하여 배양한다면 배발생능을 가진 난자들의 비율을 높일 수 있을 것으로 사료된다.

Keywords

References

  1. Amamath D, Kato Y and Tsunoda Y. 2007. Effect of the timing of first cleavage on in vitro developmental potential of nuclear-transferred bovine oocytes receiving cumulus and fibroblast cells. J. Reprod. Dev., Advance Publication
  2. Avery B, Madison V and Greve T. 1991. Sex and development in bovine in-vitro fertilized embryos. Theriogenology, 35:953-963 https://doi.org/10.1016/0093-691X(91)90306-X
  3. Barnes FL and First NL. 1991. Embryonic transcription in vitro cultured bovine embryos. Mol. Reprod. Dev., 29:117-123 https://doi.org/10.1002/mrd.1080290205
  4. De Sousa PA, Caveney A, Westhusin ME and Watson AJ. 1998. Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology, 49: 115-128 https://doi.org/10.1016/S0093-691X(97)00406-8
  5. Ebner T, Moser M, Sommergruber M and Tews G. 2003. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development : A review. Hum. Reprod. Update, 9:251-262 https://doi.org/10.1093/humupd/dmg021
  6. Eid LN, Lorton SP and Parrish JJ. 1994. Paternal influence on S-phase in the first cell cycle of the bovine embryo. Biol. Reprod., 51:1232-1237 https://doi.org/10.1095/biolreprod51.6.1232
  7. Fenwick J, Platteau P, Murdoch AP and Herbert M. 2002. Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum. Reprod., 17:407-412 https://doi.org/10.1093/humrep/17.2.407
  8. Hao Y, Lai L, Mao J, Im GS, Bonk A and Prather RS. 2003. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod., 69:501-507 https://doi.org/10.1095/biolreprod.103.016170
  9. Hunter AG and Moor RM. 1987. Stage-dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in vitro. J. Dairy Sci., 70: 1646-1651 https://doi.org/10.3168/jds.S0022-0302(87)80192-3
  10. Kastrop PM, Bevers MM, Destree Oh and Kruip TA. 1991. Protein synthesis and phosphorylation patterns of bovine oocytes maturing in vivo. Mol. Reprod. Dev., 29:271-275 https://doi.org/10.1002/mrd.1080290309
  11. Kobayashi T, Kato Y and Tsunoda Y. 2004. Effect of the timing of the first cleavage on the developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells. Theriogenology, 62:854-860 https://doi.org/10.1016/j.theriogenology.2003.12.032
  12. Lonergan P, Khatir H, Piumi F, Rieger D, Humblot P and Boland MP. 1999. Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil., 117:159-167 https://doi.org/10.1530/jrf.0.1170159
  13. Peippo J, Kurkilahti M and Bredbacka P. 2001. Developmental kinetics of in vitro produced bovine embryos: the effect fo sex, glucose and exposure to time-lapse enviroment. Zygote, 9: 105-113 https://doi.org/10.1017/S0967199401001113
  14. Sakkas D, Shoukir Y, Chardonnens D, Bianchi PG and Campana A. 1998. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as na indicator of embryo viability. Hum. Reprod., 13:182-187 https://doi.org/10.1093/humrep/13.1.182
  15. Shoukir Y, Campana A, Farley T and Sakkas D. 1997. Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum. Reprod., 12:1531-1536 https://doi.org/10.1093/humrep/12.7.1531
  16. Sirard MA, Florman HM, Leibfried-Rutledge ML, Barnes FL, Sims ML and First NL. 1989. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod., 40:1257-1263 https://doi.org/10.1095/biolreprod40.6.1257
  17. Sirard MA, Richard F, Blondin P and Robert C. 2006. Contribution of the oocytes to embryo quality. Theriogenology, 65:126-136 https://doi.org/10.1016/j.theriogenology.2005.09.020
  18. Tsunoda Y, Tokunaga T and Sugie T. 1985. Altered sex ratio of live young after transfer of fast- and slow- developing mouse embryos. Gamete Res., 12:301-304 https://doi.org/10.1002/mrd.1120120308
  19. Vajta G, Zhang Y and Machaty Z. 2007. Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod. Fertil. Dev., 19:403-423 https://doi.org/10.1071/RD06089
  20. Van Langendonckt A, donnay I, Schuurbiers N, Auquier P, Carolan C, Massip A and Dessy F. 1997. Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. J. Reprod. Fertil., 109:87-93 https://doi.org/10.1530/jrf.0.1090087
  21. Van Soom A, Ysebaert MT and de Kruif A. 1997. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitroproduced bovine embryos. Mol. Reprod. Dev., 47:47-56 https://doi.org/10.1002/(SICI)1098-2795(199705)47:1<47::AID-MRD7>3.0.CO;2-Q
  22. Ward F, Rizos D, Corridan D, Quinn K, Boland M and Lonergan P. 2001. Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryos development in vitro and fertility in vivo. Mol. Reprod. Dev., 60:47-55 https://doi.org/10.1002/mrd.1060
  23. Warner CM, McElhinny AS, Wu L, Cieluch C, Ke X, Cao W, Tang C and Exlery GE. 1998. Role of the ped gene and apoptosis genes in control of preimplantation development. J. Assist. Reprod. Genet., 15:331-337 https://doi.org/10.1023/A:1022560914833
  24. 김현종, 조상래, 최창용, 최선호, 한만희, 손동수, 김영근, 이승수, 류일선, 김인철, 김일화, 임경순. 2006. 돼지 난모 세포의 체외 성숙 후 극체 방출 및 미방출란의 핵형과 배발달율. 한국수정란이식학회지, 21:169-175
  25. 김현종, 최선호, 한만희, 손동수, 류일선, 김인철, 이장희, 김일화, 임경순, 조상래. 2005. 돼지 난모 세포의 단위발생에 있어서 성숙시간과 활성화 처리가 활성화와 발달에 미치는 영향. 한국수정란이식학회지, 20:25-33