DOI QR코드

DOI QR Code

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek (Department of Biomedical Engineering and Materials, School of Medicine, Soonchunhyang University) ;
  • Quang, Do Van (Department of Biomedical Engineering and Materials, School of Medicine, Soonchunhyang University) ;
  • Song, Ho-Yeon (Department of Microbiology, School of Medicine, Soonchunhyang University)
  • 발행 : 2007.06.30

초록

Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

키워드

참고문헌

  1. W. Li and L. Gao, 'Fabrication of HAp-$ZrO_2$ (3Y) Nanocomposite by SPS,' Biomaterials, 24 937-3 (2003) https://doi.org/10.1016/S0142-9612(02)00428-3
  2. G. Willmann, H. J. Fruh and H. G. Pfaff, 'Wear Characteristics of Sliding Pars of $ZrO_2$ (Y-TZP) for Hip Endoprostheses,' Biomaterials, 17 2157-5 (1996) https://doi.org/10.1016/0142-9612(96)00042-7
  3. W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng and P.S. Kuo, 'Mechanical Properties of $Al_2O_3/ZrO_2$ Composites,' J. Eur. Ceram. Soc., 22 2827-33 (2002) https://doi.org/10.1016/S0955-2219(02)00043-2
  4. A. K. Gain, B. T. Lee and H. Y. Song, 'Microstructure and Mechanical Properties of Porous Ytria Stabilized Zirconia Ceramic using Poly Methyl Methacrylate Powder,' Scrip. Mater., 54 2081-84 (2006) https://doi.org/10.1016/j.scriptamat.2006.03.009
  5. B. T. Lee, I. C. Kang, A. K. Gain, K. H. Kim and H. Y. Song, 'Fabrication of Pore-gradient $Al_2O_3-ZrO_2$ Sintered Bodies by Fibrous Monolithic Process,' J. Eur. Ceram. Soc., 26 3525-26 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.12.017
  6. V. Michaud and A. Mortensen, 'Infiltration Processing of Fiber Reinforced Composites: Governing Phenomena,' Composites: Part A 32 981-15 (2001) https://doi.org/10.1016/S1359-835X(01)00015-X
  7. K. Konopka, A. Boczkowska, K. Batorski, M. Szafran and K. J. Kurzydlowski, 'Microstructure and Properties of Novel Ceramic-polymer Composites,' Mater. Let., 58 3857- 5 (2004) https://doi.org/10.1016/j.matlet.2004.07.025
  8. J. A. Cornie, et al, 'Processing of Metal and Ceramic Matrix Composites,' Bull Amer. Ceram. Soc., 65 [2] 293-11 (1986)
  9. W. B. Hillig, 'Melt Infiltration Approach to Ceramic Matrix Composites,' J. Amer. Ceram. Soc., 71 [2] 96-9 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05840.x
  10. B. R. Marple, and D. J. Green, 'Mullite Alumina Particulate Composites by Infiltration Processing: II, Infiltration and Characterization,' J. Amer. Ceram. Soc., 73 [12] 3611- 6 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb04266.x
  11. A. A. Abdala, D. L. Milius, D. H. Adamson, I. A. Aksay and R. K. Prud' homme, 'Inspired by Abalone Shell: Strengthening of Porous Ceramics with Polymers,' Polyme. Mater: Sci and Engi., 90 384-1 (2004)
  12. J. Sabbagh, J. Vreven and G. Leloup, 'Dynamic and Static Moduli of Elasticity of Resin-based Materials,' Dental Materials, 18 64-7 (2002) https://doi.org/10.1016/S0109-5641(01)00021-5
  13. K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, 'Biodegradable and Bioactive Porous Polymer/inorganic Composites Scaffolds for Bone Tissue Engineering,' Biomaterials, 27 3413-18 (2006) https://doi.org/10.1016/j.biomaterials.2006.01.039
  14. T. M. Keaveny and W. C. Hayes, 'Mechanical Properties of Cortical and Trabecular Bone,' In: Hall BK, p. 285-59, editor. Bone growth. Boca Raton, FL: CRC Press, 1993
  15. P. Zioupos and J. D. Currey, 'Changes in the Stiffness, Strength and Toughness of Human Cortical Bone with Age,' Bone, 22 57-9 (1998) https://doi.org/10.1016/S8756-3282(97)00228-7
  16. A. Wanner, 'Elastic Modulus Measurements of Extremely Porous Ceramic Materials by Ultrasonic Phase Spectroscopy,' Mater. Sci. Engi., A 248 35-8 (1998) https://doi.org/10.1016/S0921-5093(98)00524-3
  17. W. Pabst, E. Gregorova and G. Ticha, 'Elasticity of Porous Ceramics-a Critical Study of Modulus-porosity Relations,' J. Eur. Ceram. Soc., 26 1085-12 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.01.041
  18. X. D. Ma, T. Ohtsuka, S. Hayashi and Z. Nakagawa, 'The Effect of BN Addition on Thermal Shock Behavior of Fiber Reinforced Porous Ceramic Composite,' Comp. Sci. Tech., 66 3089-85 (2006) https://doi.org/10.1016/j.compscitech.2006.04.017

피인용 문헌

  1. Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.01
  2. Fabrication of bioglass infiltrated Al2O3–(m-ZrO2) composites vol.20, pp.1, 2009, https://doi.org/10.1007/s10856-008-3568-1