DOI QR코드

DOI QR Code

특정 온도에서 용융 실리카의 확산거동 및 구조분석

Structural Properties and Diffusion Behaviors of Liquid Silica at Finite Temperatures

  • 이병민 (한국기술교육대학교 신소재공학과)
  • Lee, Byoung-Min (Department of Materials Engineering, Korea University of Technology and Education)
  • 발행 : 2007.06.30

초록

The structural properties of $SiO_2$ liquid at finite temperatures have been investigated by molecular dynamics (MD) simulations utilizing the Tersoff interatomic potential. During cooling process, the $SiO_2$ liquid structure quenched with a cooling rate of $1.0{\times}10^{11}K/sec$ shows the traditional properties observed in the experiments. The coordination defects of system decrease with decreasing temperature up to 17%. The $SiO_2$ glass quenched up to 1600 K contains defects consisting of the fivefold coordination of Si, and the threefold coordination of O atoms. The calculated diffusion coefficients which are calculated by monitoring. the mean-square displacement of atoms drop to almost zero below 3000 K ($<10^{-6}\;cm^2/sec$) but has a fluctuations at low temperature. The structure properties of $SiO_2$ liquid shows a significant dependence on the temperature during cooling process. Bond-angle distribution at around $120^{\circ}$ originate from the O and Si atoms consisting of the over-coordinated O atoms.

키워드

참고문헌

  1. W. Jin, P. Vashishta, and R. Lalia, 'Dynamics Structure Factor and Vibrational Properties of $SiO_2$ Glass,' Phys. Rev. B 48 [13] 9359-68 (1993) https://doi.org/10.1103/PhysRevB.48.9359
  2. B. M. Lee, B. S. Seong, S. Munetoh, and T. Motooka, 'Heat Flow and Structural Properties of Naturally Cooled a-Si: A Molecular Dynamics Study,' J. Korean Phys. Soc., 49 [6] 2353-61 (2006)
  3. A. Rahmani, M. Benoit, and C. Benoit, 'Signature of Small Rings in the Raman Spectra of Normal and Compressed Amorphous Silica: A Combined Classical and ab Initio Study,' Phys. Rev., B 68 [3] 1842021-12 (2003) https://doi.org/10.1103/PhysRevB.68.184202
  4. J. Sarnthein, A. Pasquarello, and R. Car, 'Origin of the High-frequency Doublet in the Vibrational Spectrum of Vitreous $SiO_2$,' Science, 275 [28] 1925-27 (1997) https://doi.org/10.1126/science.275.5308.1925
  5. M. Zhang, Y. Bando, and K. Wada, 'Silicon Dioxide Nanotubes Prepared by Anodic Alumina as Templates,' J. Mater. Res., 15 [2] 387-92 (2000) https://doi.org/10.1557/JMR.2000.0061
  6. H. P. Hentzc, S. R. Raghavan, C. A. McKelvey, and E. W. Kaler, 'Silica Hollow Spheres by Templating of Catanionic Vesicles,' Langmuir, 19 [4] 1069-74 (2003) https://doi.org/10.1021/la020727w
  7. S. Tsuneyuki, Y. Matsui, H. Aoki, and M. Tsukada, 'New Pressure-induced Structural Transformation in Silica Obtained by Computer Simulation,' Nature, 339 [18] 209-11 (1989) https://doi.org/10.1038/339209a0
  8. B. M. Lee, H. K. Baik, B. S. Seong, S. Munetoh, and T. Motooka, 'Generation of Glass $SiO_2$ Structure by Various Cooling Rates: A Molecular-dynamics Study,' Comp. Mater. Sci., 37 [3] 203-8 (2006) https://doi.org/10.1016/j.commatsci.2006.01.003
  9. D. Herzbach, K. Binder, and M. H. Muser, 'Comparison of Model Potentials for Molecular-dynamics Simulations of Silica,' J. Chem. Phys., 123 [4] 1247111-1110 (2005) https://doi.org/10.1063/1.2038747
  10. T. Tangney and S. Scandolo, 'An ab Initio Parametrized Interatomic Force Field for Silica,' J. Chem. Phys., 117 [19] 8898-904 (2002) https://doi.org/10.1063/1.1513312
  11. T. Motooka, K. Nisihira, S. Munetoh, K. Moriguchi, and A. Shintani, 'Molecular-dynamics Simulations of Solid-phase Epitaxi of Si: Growth Mechanisms,' Phys. Rev., B 61 [12] 8537-40 (2000) https://doi.org/10.1103/PhysRevB.61.8537
  12. T. Motooka, K. Nisihira, R. Oshima, H. Nishizawa, and F. Hori, 'Atomic Diffusion at Solid/liquid Interface of Silicon: Transition Layer and Defect Formation,' Phys. Rev., B 65 [R] 813041-44 (2002) https://doi.org/10.1103/PhysRevB.65.081304
  13. B. M. Lee, S. Munetoh, and T. Motooka, 'Molecular Dynamics Study of Velocity Distribution and Local Temperature Change during Rapid Cooling Processes in Excimer- laser Annealed Silicon,' Comp. Mater. Sci., 37 [3] 198- 202 (2006) https://doi.org/10.1016/j.commatsci.2006.01.017
  14. B. M. Lee, H. K. Baik, B. S. Seong, S. Munetoh, and T. Motooka, 'Molecular-dynamics Analysis of the Nucleation and Crystallization Process of Si,' Phys., B 392 [1-2] 266- 71 (2007) https://doi.org/10.1016/j.physb.2006.11.031
  15. B. M. Lee, T. Kuranaga S. Munetoh, and T. Motooka, 'Surface Nucleation of the (111) Plane of Excimer Laser Annealed Si on $SiO_2$ Substrates: A Molecular Dynamics Study,' J. Appl. Phys., 392 [1-2] 266-71 (2007) https://doi.org/10.1063/1.2646109
  16. S. Munetoh, T. Kuranaga, B. M. Lee, T. Motooka, T. Endo, and T. Warabisako, 'Crystal Growth of Silicon thin Film on Glass by Excimer Laser Annealing: A Molecular-dynamics Study,' J. J. Appl. Phys., 45 [5B] 4344-46 (2006) https://doi.org/10.1143/JJAP.45.4344
  17. W. F. Gunsteren and H. J. C. Berendsen, 'Algorithms for Macromolecular Dynamics and Constraint Dynamics,' Mol. Phys., 34 [5] 1311-27 (1977) https://doi.org/10.1080/00268977700102571
  18. J. Sarnthein, A. Pasquarello, and R. Car, 'Structural and Electronic Properties of Liquid and Amorphous $SiO_2$: An ab Initio Molecular Dynamics Study,' Phys. Rev. Lett., 74 [23] 4682-85 (1995) https://doi.org/10.1103/PhysRevLett.74.4682
  19. R. L. Mozzi and B. E. Warren, 'The Structure of Vitreous Silica,' J. Appl. Cryst., 2 [2] 164-72 (1969) https://doi.org/10.1107/S0021889869006868