Evaluation of Mass Variation of Aspheric Glass tens Using Resonant Ultrasound Spectroscopy

비구면 렌즈의 질량변화 평가를 위한 RUS의 적용

  • 허욱 (조선대학교 대학원 기계설계학과) ;
  • 임광희 (우석대학교 기계자동차공학과) ;
  • 양인영 (조선대학교 기계설계학과) ;
  • 김지훈 (조선대학교 기계설계학과)
  • Published : 2007.04.30

Abstract

Ultra precise processed parts are required together with the development of optoelectronics industry. As important parts of optoelectronics industry, there are ferrule of optical connector and lens for optical devices. In particular, the lens requires high reliability with high precision without including flaws. These optical modules need ultra precise processing in order to reduce the loss of light sources and various nondestructive inspections are carried out in the finishing stage to separate good and bad quality products. Therefore, it was analyzed through the characteristics of response of amplitude and resonant frequency according to the mass variations of aspheric lens that is used currently in laser printers.

광산업 발전과 더불어 초정밀 가공부품이 요구되고 있다. 광산업 분야의 중요부품인 광커넥터의 페롤(ferrule) 및 광학기기용 렌즈이다. 특히, 이 렌즈는 높은 형상정밀도와 결함이 포함되지 않는 등 높은 신뢰성이 요구되는 실정이다. 이들 광소자들은 광원의 손실을 줄이기 위해서는 이들 부품의 초정밀 가공이 필수적이며 양품과 불량품을 판별하기 위해 완성단계에서 다양한 비파괴 검사가 이루어지고 있다. 공명 초음파 분광법은 물체의 형상, 탄성, 결정의 방향, 밀도 등에 의해 결정되는 공진주파수 응답 특성을 비교 분석하여 재료의 형상변화, 탄성정수 및 결함의 유 무를 검출해내는 방법이다. 따라서 현재 레이저용 프린터에 사용되는 비구면 렌즈의 질량 변화에 따라 공진크기 및 공진주파수 응답 특성을 통하여 분석하였다.

Keywords

References

  1. Sunghoon Kim, Kyungyun Baek, Youngnam Kim and Inyoung Yang, 'Nondestructive evaluation of the flaw in a ceramic ferrule by resonant ultrasound spectroscopy,' Transactions of the Korean Society of Automotive Engineers, Vol. 12, No. 5, pp. 108-117, (2004)
  2. P. Heyliger and H. Ledbetter, 'Detection of surface and subsurface flaws in homogeneous and composite solids by resonant ultrasound,' Journal of Nondestructive Evaluation, Vol. 17, No.2, pp. 79-87, (1998) https://doi.org/10.1007/BF02995485
  3. J. G. Saxton, 'Resonant inspection of production parts,' The American Ceramic Society Bulletin, Vol. 75, No. 10, pp. 48-50, (1996)
  4. D. Litwiller, 'Resonant ultrasound spectroscopy and the elastic properties of several selected materials,' Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, pp. 1-7, (2000)
  5. R. G. Leisure and F. A. Willis, 'Resonant ultrasound spectroscopy,' J. Phys., Condens. Matter 9, pp. 6001-6029, (1997) https://doi.org/10.1088/0953-8984/9/28/002
  6. Masahiro Nishida, Tomio Endot, Tadaharu Adachi and Hiroyuki Matsumoto, 'Measurements of local elastic moduli by amplitude and phase acoustic microscope,' NDT&E International, Vol. 30, No.5, pp. 271-277, (1997) https://doi.org/10.1016/S0963-8695(96)00054-0
  7. Masahiro Nishidaa, Tomio Endob, Tadaharu Adachia and Hiroyuki Matsumoto, 'An acoustic lens to measure wave velocities with the complex V(z) curve method,' NDT&E International Vol. 32, Vol. 4, pp. 219-224, (1999) https://doi.org/10.1016/S0963-8695(98)00048-6
  8. R. B. Schwarz and J. F. Vuorinen, 'Resonant ultrasound spectroscopy: applications, current status and limitations,' Journal of Alloys and Compounds 310, pp. 243-250, (2000) https://doi.org/10.1016/S0925-8388(00)00925-7
  9. T. Lee, R. S. Lakes and A. Lal, 'Resonant ultrasound spectroscopy for measurement of mechanical damping: comparison with broadband viscoelastic spectroscopy,' Review of Scientific Instruments Vol. 71, No.7, pp. 2855-2861, (2000) https://doi.org/10.1063/1.1150703