DOI QR코드

DOI QR Code

신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques

  • 신동윤 (인하대학교 대학원 기계공학과) ;
  • 김광용 (인하대학교 기계공학부)
  • 발행 : 2007.06.30

초록

This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

키워드

참고문헌

  1. Ligrani P.M., Oliveira M.M., Blaskovich T., 2003, 'Comparison of Heat Transfer Augmentation Techniques,' AIAA J., Vol. 41, pp. 337-362 https://doi.org/10.2514/2.1964
  2. Mahmood, G. I., and Ligrani, P.M., 2002, 'Heat Transfer in a Dimpled Channel Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure,' International Journal of Heat and Mass Transfer, Vol. 45, No. 10, pp. 2011-2020 https://doi.org/10.1016/S0017-9310(01)00314-3
  3. Burgess, N. K. and Ligrani, P. M., 2004, 'Effects of Dimple Depth on Nusselt Numbers and Friction Factors for Internal Cooling Channel,' ASME Paper No. GT2004-5432
  4. Park J, Desam P.R., Ligrani P.M., 2004, 'Numerical Predictions of Flow Structure above a Dimpled Surface in a Channel,' Numerical Heat Transfer A, Vol. 45, pp. 1-20 https://doi.org/10.1080/1040778049026740
  5. Park J., Ligrani P.M., 2005, 'Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel,' Numerical Heat Transfer A, Vol. 47, pp. 209-232 https://doi.org/10.1080/10407780590886304
  6. Patrick, W. V. and Tafti, D. K., 2004, 'Computations of Flow Structure and Heat Transfer in a Dimpled Channel at Low to Moderate Reynolds Number,' Proceeding of HT-FED04 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, USA, ASME Paper No. HT-FED04-56171
  7. Isaev, S. A. and Leont'ev, A. I., 2003, 'Numerical Simulation df Vortex Enhancement of Heat Transfer Under Conditions of Turbulent Flow Past a Spherical Dimple on the Wall of a Narrow Channel,' High Temperature, Vol. 41, No. 5, pp. 665-679 https://doi.org/10.1023/A:1026100913269
  8. K. Y. Kim and S. S. Kim, 2002, 'Shape optimization of rib-roughened surface to enhance turbulent heat transfer', Journal of Heat and Mass Transfer, Vol. 45, pp. 2719-2727 https://doi.org/10.1016/S0017-9310(01)00358-1
  9. H. M. Kim and K. Y. Kim, 2004, 'Design optimization of rib-roughened channel to enhance turbulent heat transfer,' International Journal of Heat and Mass Transfer, Vol. 47, Issue 23, pp. 5159-5168 https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.035
  10. H. M .Kim and K. Y. Kim, 2004, 'Shape Design of Heat Transfer Surfaces with angled Ribs Using Numerical Optimization Techniques,' Transactions of KSME B, Vol. 28, No. 9, pp. 1051-1057 https://doi.org/10.3795/KSME-B.2004.28.9.1051
  11. H. M. Kim and K. Y. Kim, 2004, 'Design optimization of Three-Dimensional Channel Roughened by Oblique Ribs using Response Surface Method,' Transactions of KSME B, Vol. 28, NO. 7, pp. 879-886 https://doi.org/10.3795/KSME-B.2004.28.7.879
  12. H. M. Kim and K. Y. Kim, 2003, 'Optimization of Heat Transfer Surfaces with Staggered Ribs to Enhance Turbulent Heat Transfer,' Transactions of KSME B, Vol. 27, No 9, pp. 1351-1359 https://doi.org/10.3795/KSME-B.2003.27.9.1351
  13. K. Y. Kim and J. Y. Choi, 2005, 'Shape Optimization of a Dimpled Channel to Enhance Turbulent Heat Transfer,' Numerical Heat Transfer, Part A, Vol. 48, pp. 901-915 https://doi.org/10.1080/10407780500226571
  14. CFX-10.0 Solver Theory, Ansys inc., 2005
  15. Menter, F. and Esch, T., 2001, 'Elements of Industrial Heat Transfer Predictions,' 16th Bazilian Congress of Mechanical Engineering (COBEM), Uberlandia, Brazil
  16. J. E. Bardina, P. G. Huang, T. Coakley, 'Turbulence modeling validation,' AIAA Paper 97-2121, 1997
  17. Y. G. Lai and R. M. C. So, 'Near-Wall Modeling of Turbulent Heat Fluxes,' Int. J. Heat Mass Transfer, vol. 33, pp. 1429-1440, 1990 https://doi.org/10.1016/0017-9310(90)90040-2
  18. D. L. Gee and R. L. Webb, 'Forced Convection Heat Transfer in Helically Rib-Roughened Tubes,' Int. J. Heat Mass Transfer, vol. 23, pp. 1127-1136, 1980 https://doi.org/10.1016/0017-9310(80)90177-5
  19. Petukhov, B. S., 1970, 'Advances in Heat Transfer,' Academic Press, New York, Vol. 6, pp. 503-504
  20. McKay, M. D., Beckman, R. J.,Conover, W. J., 1979. 'A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,' Technometrics, Vol. 21, pp. 239-245 https://doi.org/10.2307/1268522
  21. MATLAB${\circledR}$, The language of technical computing, Release 14. The Math Works Inc
  22. K. Y. Kim and D. Y. Shin, 'Optimization of a Staggered Dimpled Surface in a Cooling Channel Using a Model,' to International Journal of Thermal Science, 2007