Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong (Department of Civil and Environmental Engineering, Georgia Institute of Technology) ;
  • Kim, Jeong-Kwon (Department of Environmental Engineering, Dong-Eui University) ;
  • Jang, Seong-Ho (Department of Regional Environmental System Engineering, Pusan National University) ;
  • Mulholland, James A. (Department of Civil and Environmental Engineering, Georgia Institute of Technology) ;
  • Ryu, Jae-Yong (R&D Planning & Management Office, Korea Institute of Environmental Science and Technology (KIEST))
  • Published : 2007.12.31


Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.


  1. Homann, K. H., and Wagner, H. G. 'Some new aspects of the mechanism of carbon formation in premixed flames,' Proc. Combust. Inst., 11, 371-376 (1967)
  2. Crittenden, B. D., and Long, R., 'Formation of polycyclic aromatics in rich premixed acetylene and ethylene flames,' Combust. Flame., 20, 359-368 (1973)
  3. Bockhorn, H., Fetting, F., and Wenz, H. W., 'Investigation of the formation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames,' Ber Bunsenges Phys. Chem., 87, 1067-1073 (1983)
  4. Frenklach, M., Clary, D. W., Cardiner, W. C., and Stein, S. E., 'Detailed kinetic modeling of soot formation in shocktube pyrolysis of acetylene.' Proc. Combust. Inst., 20, 887-901 (1984)
  5. Cole, J. A., Bittner, J. D., Longwell, J. P., and Howard, J. B., 'Formation mechanisms of aromatic compounds in aliphatic flames,' Combust. Flame., 56, 51-70 (1984)
  6. Westmoreland, P. R., Dean, A. M., Howard, J. B., and Longwell, J. P., 'Forming Benzene in flames by Chemically Activated Isomerizations,' J. Phys. Chem., 93, 8171-8180 (1989)
  7. Marinov, N. M., Pitz, W. J., Westbrook, C. K., and Castaldi, M. J., Senken, S. M., 'Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames,' Combust Sci. Technol., 116, 117-211 (1996)
  8. Miller, J. A., and Melius, C. F., 'Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels,' Combust. Flame, 91, 21-39 (1992)
  9. D'Anna, A., Violi, A., D'Alessio, A. 'Modeling the rich combustion of aliphatic hydrocarbons,' Combust. Flame, 121, 418-429 (2000)
  10. Violi, A., Sarofim, A. F., and Truong, T. N. 'Quantum mechanical study of molecular weight growth process by combination of aromatic molecules,' Combust. Flame, 126, 1506-1515, (2001)
  11. Violi, A., D'Anna, A., D'Alessio, A., and Sarofim, A. F., 'Modeling aerosol formation in opposed-flow diffusion flames,' Chemosphere, 51 (10), 1047-1054 (2003)
  12. Violi, A., D'Anna, A., and D'Alessio, A., 'Modeling of particulate formation in combustion and pyrolysis,' Chem. Eng. Sci., 54, 3433-3442 (1999)
  13. D'Anna, A., and Violi, A., 'A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames,' Proc. Combust. Inst., 27, 425-433 (1998)
  14. Violi, A., Sarofim, A. F., and Truong, T. N. 'Quantum mechanical study of molecular weight growth process by combination of aromatic molecules,' Combust. Flame, 126 (1-2), 1506-1515 (2001)
  15. Lamprecht, A., Atakan, B., and Kohse-Höinghaus, K., 'Fuelrich flame chemistry in low-pressure cyclopentadiene flames,' Proc. Combust. Inst., 28, 1817-1824, (2000)
  16. Gomez, A., Sidebotham, G., and Glassman, I., 'Sooting behavior in temperature controlled laminar diffusion flames,' Combust. Flame, 58, 5845-5857 (1984)
  17. Spielmann, R., and Cramers, C. A., 'Cyclopentadienic compounds as intermediates in the thermal degradation of phenols: Kinetics of thermal decomposition of cyclopentadiene,' Chromatographia, 5, 295-300 (1972)
  18. Manion, J., and Louw, R., 'Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K,' J. Phys. Chem., 93, 3563-3574 (1989)
  19. Friderichsen, A. V., Shin, E.-J., Evans, R. J., Nimlos, M. R., Dayton, D. C., and Ellison, G. B., 'The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle,' Fuel, 80, 1747-1755 (2001)
  20. Dean, A. M., 'Predictions of pressure and temperature effects upon radical addition and recombination reactions,' J. Phys. Chem., 89, 4600-4608 (1985)
  21. Melius, C. F., Colvin, M. E., Marinov, N. M., Pitz, W. J., and Senkan, S. M., 'Reaction mechanisms in aromatic hydrocarbon formation involving the $C_5H_5$ cyclopenta dienyl moiety,' Proc. Combust. Inst., 26, 685-692 (1996)
  22. Richter, H., Benish, T. G., Mazyar, O. A., Green, W. H., and Howard, J. B., 'Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame,' Proc. Combust. Inst., 28, 2609-2618 (2000)
  23. Mulholland, J. A., Lu, M., and Kim, D. H., 'Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties,' Proc. Combust. Inst., 28, 2593-2599 (2000)
  24. Lu, M., and Mulholland, J. A., 'Aromatic hydrocarbon growth from indene,' Chemosphere, 42, 625-633 (2001)
  25. Lu, M., Mulholland, J. A., 'PAH growth from the pyrolysis of CPD, indene and naphthalene mixture,' Chemosphere, 55, 605-610 (2004)
  26. Burcat, A., and Dvinyaninov, M., 'Detailed kinetics of cyclopentadiene decomposition studied in a shock tube,' Int. J. Chem. Kinetics, 29(7), 505-514 (1997)<505::AID-KIN4>3.0.CO;2-Y
  27. Stewart, J. J. P., 'MOPAC: A semiempirical molecular orbital program,' J. Com. Mol. Design, 4, 1-105 (1990)
  28. Beach, D. B., 'Design of low-temperature thermal chemical vapor deposition processes,' IBM J. Res. Develop., 34 (6), 795-805 (1990)
  29. Madden, L. K., Mebel, A. M., Lin, M. C., and Melius, C. F., 'Theoretical study of the thermal isomerization of fulvene to benzene,' J. Phys. Org. Chem., 9 (12), 801-810 (1996)<801::AID-POC852>3.0.CO;2-D
  30. Dubnikova, F., and Lifshitz, A., 'Ring expansion in methylcyclopentadiene radicals: Quantum chemical kinetic calculations,' J. Phys. Chem., A 106, 8173-8183 (2002)

Cited by

  1. Polycyclic Aromatic Hydrocarbons: Temperature Driven Formation and Behavior during Coal Combustion in a Coal-Fired Power Plant vol.27, pp.10, 2013,
  2. Effect of ethanol addition on soot precursors emissions during benzene oxidation in a jet-stirred reactor vol.21, pp.10, 2014,
  3. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study vol.18, pp.11, 2016,
  4. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl–indenyl addition vol.19, pp.29, 2017,