A Study on Reliability-driven Device Placement Using Simulated Annealing Algorithm

시뮬레이티드 어닐링을 이용한 신뢰도 최적 소자배치 연구

  • Published : 2007.05.25

Abstract

This paper introduces a study on reliability-driven device placement using simulated annealing algorithm which can be applicable to MCM or electronic systems embedded in a spacecraft running at thermal conduction environment. Reliability of the unit's has been predicted with the devices' junction temperatures calculated from FDM solver and optimized by simulated annealing algorithm. Simulated annealing in this paper adopts swapping devices method as a perturbation. This paper describes and compares the optimization simulation results with respect to two objective functions: minimization of failure rate and minimization of average junction temperature. Annealing temperature variation simulation case and equilibrium coefficient variation simulation case are also presented at the two respective objective functions. This paper proposes a new approach for reliability optimization of MCM and electronic systems considering those simulation results.

본 논문에서는 열전도 환경하의 MCM과 진공에서 작동하는 우주전자 장비의 신뢰도 최적화를 위한 부품 배치 연구에 관해 기술하고 있다. 최적배치를 위해 초기 부품 배치 후 FDM을 solver로 이용하여 부품의 접합온도를 계산하였으며 접합온도를 이용하여 전자장치의 신뢰도를 예측한 후 시뮬레이티드 어닐링 방법을 통해 신뢰도 최적배치 결과가 기술되었다. 시뮬레이티드 어닐링 적용 시 흔들기는 부품 치환방식을 이용하였으며 온도 감소계수 및 열 평형 계수의 변화에 따른 시뮬레이션 결과를 기술하였으며 특히 장치의 고장률 최소화 목적함수와 평균 접합온도 최소화 목적함수에 대해 각 적용결과에 대한 비교분석을 통하여 새로운 신뢰도 최적화 접근방법을 제안하였다.

Keywords

References

  1. Michael D. Osterman and Michael G. Pecht, 'Placement for Reliability and Routability of Convectively Cooled PWB's', IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 7. pp. 734-744, Jul. 1990 https://doi.org/10.1109/43.55206
  2. Ching-Han Tsai and Sung-Mo Kang, 'Macrocell Placement with Temperature Profile Optimization,' Proceedings of the 1999 IEEE ISCAS, vol. 6, pp. 390-394. Jul 1999 https://doi.org/10.1109/ISCAS.1999.780177
  3. Ching-Han Tsai and Sung-Mo Kang, 'Cell-Level Placement for Improving Substrate Thermal Distribution,' IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 19, no. 2, pp. 253-266, Feb. 2000 https://doi.org/10.1109/43.828554
  4. Jing Lee, 'Thermal Placement Algorithm Based on Heat Conduction Analogy,' IEEE Transactions on Components and Packaging Technologies, vol. 26, no. 2, pp. 473-483, Jun. 2003. https://doi.org/10.1109/TCAPT.2003.815091
  5. Jing Lee, 'General Thermal Force With Experimental Studies,' IEEE Transactions on Component and Packaging Technologies, vol. 29, no. 1, pp20-29, March 2006 https://doi.org/10.1109/TCAPT.2006
  6. MIL-HDBK-217F Reliability Prediction of Electronic Equipment, DoD USA, 1991
  7. Milton Oring, Reliability and Failure of Electronic Materials and Devices, Academic Press, 1998
  8. Pradeep Lall, 'Tutorial: Temperature As an Input to Microelectronics-Reliability Models,' IEEE Transactions on Reliability, vol. 45, no. 1, pp. 3-9, March 1996 https://doi.org/10.1109/24.488908
  9. Frank P. Incroperat and David P. Dewitt, Fundamentals of Heat and Mass Transfer, 4th edition John Wiley&Sons, pp. 211-219, 1996
  10. 김주년, 김보관, '열전도 환경을 고려한 전장탑재물의 소자 열 해석' 전자공학회논문지 제43권SC편 제5호 pp.60-67, 2006년9월
  11. Kirkpatrick, S., Gelatt Jr., C.D., & Vecchi, M. P.. 'Optimization by simulated annealing,' Science, pp. 220, 671. 1983 https://doi.org/10.1126/science.220.4598.671
  12. Jilla, C., Simulated Annealing, MIT 16.899 Multidisciplinary System Design Optimization Lecture Notes, 2002