Treatment of Industrial Wastewater with High Concentration of Hydrocarbons Using Membrane Reactors

  • Bienati, B. (Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso) ;
  • Bottino, A. (Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso) ;
  • Comite, A. (Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso) ;
  • Ferrari, F. (Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso) ;
  • Firpo, R. (Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso) ;
  • Capannelli, G. (Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso)
  • Published : 2007.06.30

Abstract

The application of membrane bioreactors for the depuration of wastewater coming from the washing of mineral oil storage tanks is described. Microfiltration hollow-fibre membranes were used in the submerged configuration. Filtration tests were carried out with a biomass concentration of about 15 g/L in order to assess the critical flux of the hollow fibre membrane used. Then particular care was taken in carrying out the performance runs in the sub-critical flux region. The reactor performance was very high, with removal efficiencies ranging between 93% and 97% also when the concentration of hydrocarbon was very high. Some kinetic parameters for the COD and the hydrocarbon removal were estimated.

Keywords

References

  1. W. Yang, N. Cicek, and J. Ilg, 'State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America', J. Membr. Sci., 270, 201-211 (2006) https://doi.org/10.1016/j.memsci.2005.07.010
  2. M. Gander, B. Jefferson, and S. Judd, 'Aerobic MBRs for domestic wastewater treatment: a review with cost considerations', Sep. Purif. Technol., 18, 119-130 (2000) https://doi.org/10.1016/S1383-5866(99)00056-8
  3. S. Zhang , R. Van Houten, D. H. Eikelboom, H. Doddema, Z. Jiang, Y. Fan, and J. Wang, 'Sewage treatment by a low energy membrane bioreactor', Bioresour. Technol., 90, 185-192 (2003) https://doi.org/10.1016/S0960-8524(03)00115-9
  4. T. I. Yoon, H. S. Lee, and C. G. Kim, 'Comparison of pilot scale performances between membrane bioreactor and hybrid conventional waste water treatment system', J. Membr. Sci., 242, 5-12 (2004) https://doi.org/10.1016/j.memsci.2004.02.040
  5. S. H. Yoon, H. S. Kim, and I. T. Yeom, 'The optimum operational condition of membrane bioreac tor (MBR): cost estimation of aeration and sludge treatment', Water Res., 38, 37-46 (2004) https://doi.org/10.1016/j.watres.2003.09.001
  6. W. Scholz and W. Fuchs, 'Treatment of oil contaminated waste water in a membrane bioreactor', Water Res., 14, 3621-3629 (2000)
  7. C. Cheng, D. Phipps, and R. M. Alkhaddar, 'Treatment of spent metalworking fluids', Water Res., 17, 4051-4063 (2005)
  8. M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, and H. Kroiss, 'Removal of selected pharmaceutical, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants', Water Res., 39, 4797-4807 (2005) https://doi.org/10.1016/j.watres.2005.09.015
  9. X. Wen, H. Ding, X. Huang, and R. Liu, 'Treatment of hospital waste water using a submerged membrane bioreactor', Process Biochem., 39, 1427-1431 (2004) https://doi.org/10.1016/S0032-9592(03)00277-2
  10. M. Petrović, S. Gonzalez, and D. Barceló, 'Analysis and removal of emerging contaminants in wastewater and drinking water', Trends in Analytical Chemistry, 10, 685-696 (2003)
  11. Y. Wang, X. Huang, and Q. Yuan, 'Nitrogen and carbon removals from food processing waste water by an anoxic/aerobic membrane bioreactor', Process Biochem., 40, 1733-1739 (2005) https://doi.org/10.1016/j.procbio.2004.06.039
  12. P. Artiga, E. Ficara, F. Malpei, J. M. Garrido, and R. Mendez, 'Treatment of two industrial waste water in a submerged membrane bioreactor', Desalination, 179, 161-169 (2005) https://doi.org/10.1016/j.desal.2004.11.064
  13. B. Van der Bruggen, E. Curcio, and E. Drioli, 'Process intensification in the texile industry: the role of membrane technology', J. Environ. Manage., 73, 267-274 (2004) https://doi.org/10.1016/j.jenvman.2004.07.007
  14. A. Pollice, A. Brookes, B. Jefferson, and S. Judd, Sub-critical flux fouling in membrane bioreactors: a review of recent literature, Desalination, 174, 221-230 (2005) https://doi.org/10.1016/j.desal.2004.09.012
  15. AWWA, WEF, and APHA, 'Standard Methods for examination of water and wastewater', XVIII ed. Washington, DC (1992)
  16. I. S. Chang and S. N. Kim, 'Watewater treatment using membrane filtration- effect of biosolids concentration on cake resistance', Process Biochem., 40, 1307-1314 (2005) https://doi.org/10.1016/j.procbio.2004.06.019
  17. S. Ognier, C. Wisniewiski, and A. Grasmick, Membrane bioreactor fouling in sub-critical filtration conditions: a local flux concept. J. Membr. Sci., 229, 171-177 (2004) https://doi.org/10.1016/j.memsci.2003.10.026
  18. J. A. Howell, H. C. Chua, and T. C. Arnot, 'In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history', J. Membr. Sci., 242, 13-19 (2004) https://doi.org/10.1016/j.memsci.2004.05.013
  19. Metcalf and Eddy Inc., 'Wastewater engineering treatment, disposal and reuse', 3rd ed., McGraw-Hill, New York (1991)
  20. G. T. Tellez, N. Nirmalakhandan, and J. L. Gardea-Torresdey, 'Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water', Advances in Environmental Research, 6, 455-470 (2002) https://doi.org/10.1016/S1093-0191(01)00073-9
  21. W. W. Eckenfelder, 'Industrial water pollution control', McGraw-Hill, London (1990)