Effect of $N_2$-back-flushing Time and TMP in Lake Water Treatment Using Multichannel Ceramic Microfiltration Membranes

다채널 세라믹 정밀여과막으로 호소수 처리시 질소 역세척 시간 및 막간 압력차의 영향

  • Park, Jin-Yong (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Bo-Reum (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 박보름 (한림대학교 환경생명공학과)
  • Published : 2007.06.30

Abstract

In this study, we treated lake water by 2 kinds of multichannel ceramic micro filtration membranes. We could investigate effects of $N_2-back-flushing$ time (BT) and transmembrane pressure (TMP), and find optimal operating conditions. The BT were changed in $10{\sim}60$ sec, TMP in $0.6{\sim}2.0$ bar at fixed filtration time (FT) 8 min, flow rate 2.0 L/min and back-flushing pressure 2.0 bar. Also, the optimal conditions were discussed in the viewpoints of resistance of membrane fouling $(R_f)$, dimensionless permeate flux $(J/J_o)$, permeate flux (J) and total permeate volume $(V_T)$. As result, optimal back-flushing conditions for HC04 ($0.4{\mu}m$ pore size) and HC10 membrane $(1.0{\mu}m)$ were BT=10 sec and BT=20 sec, respectively. Then, higher TMP should increase the driving force, and could produce more VT. Average rejection rates of pollutants were higher than 95.4% for turbidity, $12.7{\sim}20.1%\;for\;COD_{Mn},\;0.0{\sim}6.4%\;for\;NH_3-N,\;1.9{\sim}4.6%$ for T-N and $34.9{\sim}88.4%$ for T-P.

본 연구에서는 2종류의 다채널 알루미나 세라믹 정밀여과막으로 호소수를 처리할 경우, 질소 역세척 시간(BT) 및 막간압력차(TMP) 영향과 최적운전조건을 규명하였다. 정상여과시간(FT)은 8분, 유량 2.0 L/min, 역세척 압력 2.0 bar로 고정하였고, BT는 $10{\sim}60$초, TMP는 $0.6{\sim}2.0$ bar로 변화시켰다. 또한, 최적운전조건은 막오염에 의한 저항 $(R_f)$, 무차원한 투과선속 $(J/J_o)$, 투과선속 (J), 총여과부피$(V_T)$의 측면에서 고찰하였다. 그 결과, $0.4{\mu}m$의 평균기공 크기를 갖고 있는 HC04 분리막의 최적 역세척 조건은 BT=10초, $1.0{\mu}m$의 평균기공인 HC10 분리막에서는 20초임을 알 수 있었다. 한편, TMP가 증가할수록 구동력의 증가로 보다 많은 $V_T$를 얻을 수 있었다. 오염물질 제거율은 탁도(Turbidity) 95.4% 이상, 화학적 산소 요구량 $(COD_{Mn})\;12.7{\sim}20.1%$, 암모니아성 질소 $(NH_3-N)\;0.0{\sim}6.4%$, 총질소 (T-N) $1.9{\sim}4.6%$, 총인 (T-P) $34.9{\sim}88.4%$의 제거 율을 보였다.

Keywords

References

  1. 강상규, 김경호, 이호신, 배동식, '수처리용 세라믹 분리막의 기술개발 현황과 정보분석', 공업화학 전망, 7(3), 83 (2004)
  2. P. Rai, C. Rai, G. C. Majumdar, S. DasGupta, and S. De, 'Resistance in series model for ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice in a stirred continuous mode', J. Membrane Sci., 283, 116 (2006) https://doi.org/10.1016/j.memsci.2006.06.018
  3. J. Altmann and S. Ripperger, 'Particle deposition and layer formation at the crossflow microfiltration', J. Membrane Sci., 124, 119 (1997) https://doi.org/10.1016/S0376-7388(96)00235-9
  4. H. K. Vyas, A. J. Mawson, R. J. Bennett, and A. D. Marshall, 'A new method for for estimationg cake height and porosity during filtration of particulate suspensions', J. Membrane Sci., 176, 113 (2000) https://doi.org/10.1016/S0376-7388(00)00437-3
  5. S. K. Karode, 'Unsteady state flux response: a method to determine the nature of the solute and gel layer in membrane filtration', J. Membrane Sci., 188, 9 (2001) https://doi.org/10.1016/S0376-7388(00)00644-X
  6. M. Heran and S. Elmaleh, 'Microfiltration through an inorganic tubular membrane with high frequency retrofiltration', J. Membrane Sci., 188, 181 (2001) https://doi.org/10.1016/S0376-7388(01)00351-9
  7. J. Cakl, I. Bauer, P. Dolecek, and P. Mikulasek, 'Effect of backflushing conditions on permeate flux in membrane crossflow microfiltration of oil emulsion', Desalination, 127, 189 (2000) https://doi.org/10.1016/S0011-9164(99)00204-0
  8. F. Meacle, A. Aunins, R. Thornton, and A. Lee, 'Optimization of the membrane purification of a polysaccharide-protein conjugate vaccine using backpulsing', J. Membrane Sci., 161, 171 (1999) https://doi.org/10.1016/S0376-7388(99)00111-8
  9. D. Chen, L. K. Weavers, and H. W. Walker, 'Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics', Water research, 40, 840 (2006) https://doi.org/10.1016/j.watres.2005.12.031
  10. K. Katsoufidou, S. G. Yiantsios. and A. J. Karabelas, 'A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling', J. Membrane Sci., 266, 40 (2005) https://doi.org/10.1016/j.memsci.2005.05.009
  11. 현상훈, '세라믹 멤브레인의 현황과 제법", 멤브레인, 3(1), 1 (1993)
  12. Q. Gan, J. A. Howell, R. W. Field, R. England, M. R. Bird, and M. T. McKechinie, 'Synergetic cleaning procedure for a ceramic membrane fouled by beer microfiltration', J. Membrane Sci., 155, 277 (1999) https://doi.org/10.1016/S0376-7388(98)00320-2
  13. N. Laitinen, D. Michaud, C. Piquet, N. Teilleria, A. Luonsi, E. Levanen, and M. Nystrom, 'Effect of filtration conditions and backflushing on ceramic membrane ultrafiltration of board industry wastewaters', Sep. Purifi. Techno., 24, 319 (2001) https://doi.org/10.1016/S1383-5866(01)00134-4
  14. J. Y. Park, S. J. Choi, and B. R. Park, 'Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment', Desalination, 202, 207 (2007) https://doi.org/10.1016/j.desal.2005.12.056
  15. M. Cheryan, 'Ultrafiltraion Handbook', pp. 89-93, Technomic Pub. Co., Pennsylvania (1984)
  16. A. K. Zander and N. K. Curry, 'Membrane and solution effects on solute rejection and productivity', Water research, 35(18), 4426 (2001) https://doi.org/10.1016/S0043-1354(01)00169-5
  17. 황현정, 박진용, '탄소계 세라믹 한외 및 정밀 여과 막으로 제지폐수 처리시 주기적 질소 역세척의 효과', 멤브레인, 12(1), 8 (2002)
  18. 동화기술편집부, '수질오염공정시험법', pp. 133-204, 동화기술 (2002)
  19. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, 'Standard Methods for the Examination of Water and Wastewater', 9th Ed., pp. 2-8, APHA, NW Washington, DC (1995)
  20. 김미희, 박진용, '제지폐수 재활용을 위한 관형 탄소계 세라믹 한외여과장치에서 물 역세척의 막오염제어 효과', 멤브레인, 11(4), 190 (2001)