Impact of Sulphur and Nitrogen Application on Seed and Xanthotoxin Yield in Ammi majus L.

  • Ahmad, Saif (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University)) ;
  • Jamal, Arshad (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University)) ;
  • Fazili, Inayat Saleem (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University)) ;
  • Alam, Tanweer (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University)) ;
  • Khan, Mather Ali (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University)) ;
  • Kamaluddin, Kamaluddin (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University)) ;
  • Iqbal, Mohd (Department of Botany, Hamdard University) ;
  • Abdin, Malik Zainul (Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University))
  • Published : 2007.06.30

Abstract

Field experiments were conducted to determine the physiological and biochemical basis of the interactive effect of sulphur (S) and nitrogen (N) application on seed and xanthotoxin yield of Ammi majus L. Six treatments were tested ($T_1$ = control-without manure and fertilizers, $T_2$ = manure @ 9 kg $plot^{-1}-10\;t\;ha^{-1},\;T_3=A_0N_{50}K_{25}P_{25},\;T_4=S_{40}N_{50}K_{25}P_{25},\;T_5=S_{40}N_{100}K_{25}P_{25}\;T_6=S_{20+20}N_{50+50}K_{25}P_{25})$). Nitrate reductase (NR) activity and ATP-sulphurylase activity in the leaves were measured at various phonological stages, as the two enzymes catalyze rate-limiting steps of the assimilatory pathways of nitrate and sulphate, respectively. The activities of these two enzymes were strongly correlated with seed and xanthotoxin yield. The highest nitrate reductase activity, ATP-sulphurylase activity and xanthotoxin yield were achieved with the treatment $T_4$. Any variation from this treatment decreased the activity of these enzymes, resulting in a reduction of the seed and xanthotoxin yield in Ammi majus L. The higher seed and xanthotoxin yield achieved in Ammi majus L. at treatment $T_4$ could be due to optimization of leaf soluble protein and photosynthetic rate, as these parameters are Influenced by S and N assimilation.

Keywords

References

  1. Abdin, M. Z., A. Ahmad, N. Khan, I. Khan, A. Jamal, and M. Iqbal. 2003. Sulphur interaction with other nutrients. In: Y.P. Abrol and A. Ahmad (eds), Sulphur in plants, pp. 359-374. Kluwer Academic Publishers, Dordrecht
  2. Abrol, Y. P., M. S. Kaim, and T. V. R. Nair. 1976. Nitrogen assimilation, its mobilization and accumulation in wheat (T. aestivum L.) grains. Cereal Res. Commun. 4 : 431-440
  3. Ahmad, A. and M. Z. Abdin. 2000. Photosynthesis and its related physiological variables in the leaves of Brassica genotypes as influenced by sulphur fertilization. Physiol Plant. 110 : 144-149 https://doi.org/10.1034/j.1399-3054.2000.110119.x
  4. Ahmad, A., G. Abraham, and M. Z. Abdin. 1999a. Physiological investigation of the impact of nitrogen and sulphur application on seed and oil yield of Rapeseed (Brassica campestris L.) and Mustard (Brassica juncea L. Czern. and Coss.) Genotypes. J. Agron Crop Sci. 183 : 19-25 https://doi.org/10.1046/j.1439-037x.1999.00307.x
  5. Ahmad, A., Y. P. Abrol, and M. Z. Abdin. 1999b. Effect of the split application of sulphur and nitrogen on the growth and yield attributes of Brassica genotypes differing in their time of flowering. Can J. Plant Sci. 79 : 175-180 https://doi.org/10.4141/P98-074
  6. Ahmad, A., G. Abraham, N. Gandotra, Y. P. Abrol, and M. Z. Abdin. 1998. Interactive effective of nitrogen and sulphur on growth and yield of Rape-seed-Mustard (Brassica juncea L. Czern. and Coss. and Brassica campestris L.) Genotypes. J. Agron Crop Sci. 181 : 193-199 https://doi.org/10.1111/j.1439-037X.1998.tb00417.x
  7. Ahmad, A., I. Khan, and M. Z. Abdin. 2001. Interactive effect of sulphur and nitrogen on N-assimilation and nitrogen harvest of rapeseed-mustard. Indian J. Plant Physiol. 6 : 46-52
  8. Ahmad, A., G. Abraham, N. Gandotra, Y. P. Abrol, and M. Z. Abdin. 1999. Interactive effective of nitrogen and sulphur on growth and yield of Rape-seed-Mustard (Brassica juncea L. Czern. and Coss. and Brassica campestris L.) Genotypes. J. Agron Crop Sci. 181 : 193-199 https://doi.org/10.1111/j.1439-037X.1998.tb00417.x
  9. Ahmad, S., M. Z. Abdin, I. S. Fazli, A. Jamal, M. Maaz, and M. Iqbal. 2004. Variability in xanthotoxin concentration in organs of Ammi majus and yield at different phonological stages. J. Med Arom Plant Sci. 26 : 8-11
  10. Ahmad, S., I. S. Fazli, A. Jamal, Kamaluddin, M. Maaz, M. Iqbal, and M. Z. Abdin. 2006. Cultivation of Ammi majus (Psoralea corylifolia L., Fabaceae) for the production of furocoumarin (Psoralen) of therapeutic value. In : M. Z. Abdin and Y. P. Abrol (eds), Traditional Systems of Medicine, pp. 465-470. Narosa Publishing House Pvt. Ltd., India)
  11. Balasubramanian, V., P. Shantakumari, and S. K. Sinha. 1977. $CO_{2}$ fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize. Ind J Experl Biol. 15: 780-782
  12. Barney, Jr. P. E. and L. P. Bush. 1985. Interaction of nitrate and sulphate reduction in tobacco. Influence of availability of nitrate and sulphate. J. Plant Nutr. 8 : 507-515
  13. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal Biochemistry. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  14. Clarkson, D. T., L. R. Saker, J. V. Purves, and R. B. Lee. 1989. Depression of nitrate and ammonium transport in barley plants with diminished sulphate status. Evidence of co-regulation of nitrogen and sulphate intake. J. Expt. Bot. 40 : 953-963 https://doi.org/10.1093/jxb/40.9.953
  15. Croy, L. I. and R. H. Hageman. 1970. Relationship of nitrate reductase activity to grain protein production in wheat. Crop Sci. 10 : 280-288 https://doi.org/10.2135/cropsci1970.0011183X001000030021x
  16. Deckard, E. L., R. J. Lambert, and R. H. Hageman. 1973. Nitrate reductase activity in corn leaves as related to yield of grain and grain protein. Crop Sci. 13 : 343-350 https://doi.org/10.2135/cropsci1973.0011183X001300030017x
  17. Eppendorfer, W. H. 1971. Effect of sulphur, nitrogen and phosphorus on the amino acid composition of the field bean (vicia faba) and responses of the biological value of the seed protein and sulphur-amino acid content. J. Sci. Food Agric. 22 : 501-505 https://doi.org/10.1002/jsfa.2740221002
  18. Evans, H. J. and A. Nason. 1953. Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28 : 233-254 https://doi.org/10.1104/pp.28.2.233
  19. Fazli, I. S., M. Z. Abdin, A. Jamal, and S. Ahmad. 2005a. Interactive effect of sulphur and nitrogen on lipid accumulation, acetyl-CoA concentration and acetyl-CoA carboxylase activity in developing seeds of oilseed crops (Brassica campestris L. and Eruca sativa Mill.). Plant Sci. 168 : 29-36 https://doi.org/10.1016/j.plantsci.2004.07.008
  20. Fazli, I. S., S. Ahmad, A. Jamal, and M. Z. Abdin. 2005b. Changes in lipid, protein, sugar and fatty acid composition in developing seeds of taramira (Eruca sativa Mill.) as influenced by sulphur and nitrogen. Ind J. Plant Physiol. 10 : 354-361
  21. Gill, B. S. and J. S. Samra. 1986. Yield behaviour of Ammi majus under different transplanting dates spacing and nitrogen levels. J. Res. Punjab Agric Univ. 23 : 213-216
  22. Hageman, R. H. and D. P. Husklesby. 1971. Nitrate reductase from higher plants. In : A San Pietro (ed.), Methods in Enzymology, pp. 491-503. Acad. Press, New York, USA
  23. Jamal A., I. S. Fazli, S. Ahmad, M. Z. Abdin, and S. J. Yun. 2005. Effect of sulphur and nitrogen application on growth characteristics, seed and oil yield of soybean cultivars. K. J. Crop Sci. 50(5) : 340-345
  24. Kavli, G. and Volden, G. 1984. Phytophotodermatitis. Photodermatol. 1 : 65-75
  25. Lakshmipathaiah, O. R., A. A. Farooqi, and B. S. Sreeramu. 1999. Influence of nitrogen, phosphorous and potassium on growth and yield of Ammi majus. Mysore J. Agric Sci. 33 : 323-327
  26. Nageswar, R. G. 1983. Statistics for agricultural sciences. Oxford and IBH Publishing Co., Oxford
  27. Pal, U. R., D. R. Gossett, J. L. Sims, and J. E. Legett. 1976. Molybdenum and sulphur nutrition effects on nitrate reductase in Burley tobacco. Can J. Bot. 54 : 2014-2022 https://doi.org/10.1139/b76-215
  28. Pande, D., M. Purohit, and P. S. Srivastava. 2002. Variation in xanthotoxin content in Ammi majus L. cultures during in vitro flowering and fruiting. Plant Science. 162 : 583-587 https://doi.org/10.1016/S0168-9452(01)00597-0
  29. Parrish, J. A., T. B. Fitzpatrick, L. Tannenbaum, and M. A. Pathak. 1974. Photochemotherapy of psoriasis with oral methoxalen and long ultraviolet light. N. Engl. J. Med. 291 : 1207-1211 https://doi.org/10.1056/NEJM197412052912301
  30. People, M. B., V. C. Beilharz, S. P. Waters, R. J. Simpson, and M. J. Dalling. 1980. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). II. Chloroplast senescence and the degradation of ribulose-1, 5-bisphosphare carboxylase. Planta. 149 : 241-251 https://doi.org/10.1007/BF00384560
  31. Ramesh., A. A. Farooqi, and S. Thilak. 1989. Influence of sowing date and nutrients on growth and yield of Isabgol (Plantago ovata Forsk.). Crop Res., 2 : 169-174
  32. Randhawa, G. S., R. K. Mahey, S. S. Saini, and B. S. Sindhu. 1985. Response of Ammi majus to age of seedling and nitrogen application under late-sown conditions. J. Res. Punjab Agric Univ. 22 : 624-628
  33. Reuveny, Z., D. K. Dougall, and P. M. Trinity. 1980. Regulatory coupling of nitrate and sulphate assimilation pathways in cultured tobacco cells. Proc. Natl Acad Sci. USA. 77 : 6670-6672
  34. Smith, I. K. 1975. Sulphate transport in cultured tobacco. Plant Physiol. 55 : 303-307 https://doi.org/10.1104/pp.55.2.303
  35. Stewart, B. A. and L. K. Porter. 1969. Nitrogen-Sulphur relationships in wheat (Triticum aestivum L.), com (Zea mays), and beans (Phaseolus vulgaris). Agronomy Journal. 61 : 267-271 https://doi.org/10.2134/agronj1969.00021962006100020027x
  36. Wilson, L. G. and R. S. Bandurski. 1958. Enzymatic reactions involving sulphate, sulphite, selenate and molybdate. J. Biol. Chem. 233: 975-981