DOI QR코드

DOI QR Code

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides

나노급 Ir 삽입 니켈실리사이드의 미세구조 분석

  • Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul) ;
  • Yoon, Ki-Jeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Tae-Hyun (Electrical Engineering, Unversity of Texas at Dallas) ;
  • Kim, Moon-Je (Electrical Engineering, Unversity of Texas at Dallas)
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 윤기정 (서울시립대학교 신소재공학과) ;
  • 이태헌 (텍사스달라스주립대학교) ;
  • 김문제 (텍사스달라스주립대학교)
  • Published : 2007.04.27

Abstract

We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Keywords

References

  1. A. Kasuya, G. Milczarek, I. Dmitruk, Y. Barnakov, R. Czajka, O. Perales, X. Liu, K. Tohji, B. Jeyadevan, K. Shinoda, T. Ogawa, T. Arai, T. Hihara, K. Sumiyama, Colloids Surf. A, 202, 291-296 (2002) https://doi.org/10.1016/S0927-7757(01)01073-1
  2. The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003)
  3. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and Redkar, Appl. Phys. Lett., 78, 3091 (2001) https://doi.org/10.1063/1.1372621
  4. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  5. C. Detavernier, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  6. J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin, and D. Vanhoenacker, J. Electrochem. Soc., 7, 144 (1997)
  7. J. J. Sun, J. Y. Tsai, and C. M. Osburn, IEEE Trans. Electron Devices, 45, 1946 (1998) https://doi.org/10.1109/16.711360
  8. Hua. Fang, Mehmet C. Ozturk, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999) https://doi.org/10.1149/1.1392621AdditionalInformation
  9. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21, 155 (2000) https://doi.org/10.1109/55.830966
  10. J. B. Lasky, J. S. Nakos, O. J. Cain, P. J. Geiss, IEEE Trans. Electron Devices, 38, 262 (1991) https://doi.org/10.1109/16.69904
  11. B. A. Julies, D. Knoesen, R. Pretorius, D. Adams, Thin Solids Films, 347, 201 (1999) https://doi.org/10.1016/S0040-6090(99)00004-8
  12. J. F. Chang, T. F. Young, Y. L. Yang, H. Y. Ueng, T. C. Chang, Mater. Chem. Phys., 83, p.199-203 (2004) https://doi.org/10.1016/S0254-0584(03)00240-2
  13. R. N. Wang, J. Y. Feng, Y. Huang, Appl. Surf. Sci., 207, p.139-143 (2003) https://doi.org/10.1016/S0169-4332(02)01327-2
  14. D. H. Keum, K. H. Kim, H. J. Lee, Transmission Electron Microscope Analytics, 1st ed., p.248-252, Cheongmoongak, Seoul, Korea (1996)
  15. K. J. Yoon, O. S. song, Kor. J. Mater. Res., 16(9), 571-577 (2006) https://doi.org/10.3740/MRSK.2006.16.9.571
  16. Colgan E. G., Gambino J. P., Hong Q. Z., Mater. Sci Eng. 16, 43 (1996) https://doi.org/10.1016/0927-796X(95)00186-7
  17. W. Huang, L. Zhang, Y. Gao, H. Jin, Microelectronic Eng. 83, 345 (2006) https://doi.org/10.1016/j.mee.2005.10.001
  18. Y. S. Jung, O. H. Song, S. Y. Kim, Y. Y. Choi, C. J. Kim, Kor. J. Mater. Res., 15, 5 (2005)