DOI QR코드

DOI QR Code

Properties of ITO on PES film in dependence on the coating conditions and vacuum annealing temperatures

증착조건과 진공열처리 온도에 따른 ITO/PES 박막의 특성 연구

  • Lee, Jae-Young (School of Materials Science and Engineering, Ulsan University) ;
  • Park, Ji-Hye (School of Materials Science and Engineering, Ulsan University) ;
  • Kim, Yu-Sung (School of Materials Science and Engineering, Ulsan University) ;
  • Chun, Hui-Gon (School of Materials Science and Engineering, Ulsan University) ;
  • You, Yong-Zoo (School of Materials Science and Engineering, Ulsan University) ;
  • Kim, Dae-Il (School of Materials Science and Engineering, Ulsan University)
  • 이재영 (울산대학교 첨단소재공학부) ;
  • 박지혜 (울산대학교 첨단소재공학부) ;
  • 김유성 (울산대학교 첨단소재공학부) ;
  • 천희곤 (울산대학교 첨단소재공학부) ;
  • 유용주 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Published : 2007.04.27

Abstract

Transparent conducting indium tin oxide (ITO) films were deposited onto the Polyethersulfone (PES) substrate by using a magnetron sputter type negative metal ion source. In order to investigate the influence of cesium (Cs) partial pressure during deposition and annealing temperature on the optoelectrical properties of ITO/PES film the films were deposited under different Cs partial pressures and post deposition annealed under different annealing temperature from $100^{\circ}C$ to $170^{\circ}C$ for 20 min at $3\;{\times}\;10^{-1}$ Pa. Optoeleetrical properties of ITO films deposited without intentional substrate heating was influenced strongly by the Cs partial pressure and the Cs partial pressure of $1.5\;{\times}\;10^{-3}$ Pa was characterized as an optimal Cs flow condition. By increasing post-deposition vacuum annealing temperature both optical transmission in visible light region and electrical conductivity of ITO films were increased. Atomic force microscopy (AFM) micrographs showed that the surface roughness also varied with post-deposition vacuum annealing temperature.

Keywords

References

  1. K. Chopre, S. Major and D. Pandya, Thin Solid Films, 102, 1 (1983) https://doi.org/10.1016/0040-6090(83)90256-0
  2. G. Sanon, R. Rup and A. Mansingh, Thin Solid Films, 190, 287 (1990) https://doi.org/10.1016/0040-6090(89)90918-8
  3. I. Hamberg and C. Granqvist, J. Appl. Phys., 60, R123 (1986) https://doi.org/10.1063/1.337534
  4. D. Morgen, Y. Aliyu and A. Salehi, Thin Solid Films, 312, 268 (1998) https://doi.org/10.1016/S0040-6090(97)00733-5
  5. A. Kulkarni, K. Schulz, T. Lim and M. Khan, Thin Solid Films, 308, 1 (1997) https://doi.org/10.1016/S0040-6090(97)00526-9
  6. D. Kim, Vacuum, 81, 279 (2006) https://doi.org/10.1016/j.vacuum.2006.04.003
  7. D. Kim and S. Kim, J. Vac. Sci. Technol., A20(4), 1314 (2002) https://doi.org/10.1116/1.1482707
  8. N. Paik, Appl. Surf. Sci., 226, 412 (2004) https://doi.org/10.1016/j.apsusc.2003.10.047
  9. L. Lin, F. Lai, Y. Qu and R. Gai, Mat. Sci. Eng. B. 138, 166 (2007) https://doi.org/10.1016/j.mseb.2007.01.021
  10. D. Kim, M. Park, H. Lee and G. Lee, Appl. Surf. Sci., 253, 409 (2006) https://doi.org/10.1016/j.apsusc.2005.12.097
  11. H. Fallah and M.Ghasemi, Mat. Res. Bull. 42, 487 (2007) https://doi.org/10.1016/j.materresbull.2006.06.024
  12. G. Haacke, J. Appl. Phys., 47, 4086 (1976) https://doi.org/10.1063/1.323240
  13. M. Bender, W. Seelig, C, Daube and J. Stollenwerk, Thin Solid Films, 326, 67 (1998) https://doi.org/10.1016/S0040-6090(98)00520-3
  14. A. Dawar and J. Joshi, J. Mater. Sci. 19, 1 (1984) https://doi.org/10.1007/BF02403106