DOI QR코드

DOI QR Code

Reed-Muller 전개식에 의한 다치 논리회로의 구성에 관한 연구

Study on Construction of Multiple-Valued Logic Circuits Based on Reed-Muller Expansions

  • 성현경 (상지대학교 컴퓨터정보공학부)
  • 발행 : 2007.04.30

초록

본 논문에서는 Reed-Muller 전개식에 의한 다치 논리 회로의 구성에 관한 한 가지 방법을 제시하였다. 먼저, Perfect Shuffle 기법과 Kronecker 곱에 의한 다치 논리함수의 입출력 상호연결에 대하여 논하였고, GF(4)의 가산회로와 승산회로를 이용하여 다치 Reed-Muller 전개식의 변환행렬과 역변환행렬을 실행하는 기본 셀을 설계하였다. 이 기본 셀들과 Perfect Shuffle과 Kronecker 곱에 의한 입출력 상호연결 방법을 이용하여 다치 Reed-Muller 전개식에 의한 다치 논리 회로를 구현하였다. 제시된 다치 Reed-Muller 전개식의 설계방법은 모듈구조를 기반으로 하여 행렬변환을 이용하므로 동일한 함수에 대하여 타 방법과 비교하여 간단하고 회로의 가산회로와 증산회로를 줄이는데 매우 효과적이다. 제안된 다치 논리회로의 설계방법은 회선경로 선택의 규칙성, 간단성, 배열의 모듈성과 병렬동작의 특징을 가진다.

In this paper, we present a method on the construction of multiple-valued circuits using Reed-Muller Expansions(RME). First, we discussed the input output interconnection of multiple valued function using Perfect Shuffle techniques and Kronecker product and designed the basic cells of performing the transform matrix and the reverse transform matrix of multiple valued RME using addition circuit and multiplication circuit of GF(4). Using these basic cells and the input-output interconnection technique based on Perfect Shuffle and Kronecker product, we implemented the multiple valued logic circuit based on RME. The proposed design method of multiple valued RME is simple and very efficient to reduce addition circuits and multiplication circuits as compared with other methods for same function because of using matrix transform based on modular structures. The proposed design method of multiple valued logic circuits is simple and regular for wire routing and possess the properties of concurrency and modularity of array.

키워드

참고문헌

  1. S. L. Hurst, 'Multiple Valued Logic Its Status and Future,' IEEE Trans. Comput., Vol. C 30, No. 9, pp.619 634, Sept. 1981 https://doi.org/10.1109/TC.1984.1676392
  2. J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, Artech House, Boston, 1998
  3. D. Jankovic and Claudio Moraga, 'Optimization of GF(4) Expressions Using the Extended Dual Polarity Property,' Proc. of 33rd International Symposium on Multiple Valued Logic, Tokyo, Japan, pp.50 55, May 2003 https://doi.org/10.1109/ISMVL.2003.1201384
  4. B. J. Falkowski and Cheng Fu. 'Polynomial Expansions over GF(3) based on Fastest Transformation,' Proc. of 33rd International Symposium on Multiple Valued Logic, Tokyo, Japan, pp.40-45, May 2003 https://doi.org/10.1109/ISMVL.2003.1201382
  5. D. Jankovic, R. S. Stankovie and R. Drechsler, 'Efficient Calculation of Fixed Polarity Polynomial Expressions for Multiple Valued Logic Functions,' Proc. of 32nd International Symposium on Multiple Valued Logic, Boston, Massachusetts, USA, pp.76-82, May 2002 https://doi.org/10.1109/ISMVL.2002.1011073
  6. B. J. Falkowski, C. C. Lozano and S. Rahardja, 'Spectra Generation for Fixed Polarity Reed Muller Transform over GF(5),' Proc. of 34th International Symposium on Multiple Valued Logic, Toronto, Canada, pp.177 1183, May 2001 https://doi.org/10.1109/ISMVL.2004.1319938
  7. B. J. Falkowski, C. C. Lozano and S. Rahardja, 'Fast Optimization of Fixed-Polarity Reed Muller Expansions over GF(5),' Proc. of 34th International Symposium on Multiple-Valued Logic, Toronto, Canada, pp.162 167, May 2004 https://doi.org/10.1109/ISMVL.2004.1319936
  8. F. Yang, 'Fast synthesis of Q valued Functions Based on Modulo Algebra Expansions' Proc. of 16th International Symposium on Multiple Valued Logic, Virginia, USA, pp.36-41, May 1986
  9. E. N. Zaitseva, T. G. Kalganova, and E. G. Kochergov, 'Logical not Polynomial Forms to represent Multiple Valued Functions,' Proc. of 26th International Symposium on Multiple Valued Logic, Santiago de Compostela, Spain, pp.302-307, May 1996 https://doi.org/10.1109/ISMVL.1996.508378
  10. S. Rahardja and B. J. Falkowski, 'A New Algorithm to Compute Quarternary Reed Muller Expansions,' Proc. of 30th International Symposium on Multiple Valued Logic, Portland, Oregon, pp.153 158, May 2000 https://doi.org/10.1109/ISMVL.2000.848614
  11. R. S. Stankovic, C. Maraga and J. Astola, 'Derivatives for Multiple Valued Functions Induced by Galois Field and Reed Muller Fourier Expressions,' Proc. of 34th International Symposium on Multiple Valued Logic, Toronto, Canada, pp.184-189, May 2004 https://doi.org/10.1109/ISMVL.2004.1319939
  12. B. J. Falkowski, C. C. Lozano and S. Rahardja, 'Calculation of best fixed polarity Reed Muller transform over GF(5),' IEICE Electronics Express, Vol. 1, No.5, pp.92 97, June, 2004 https://doi.org/10.1587/elex.1.92
  13. M. Davio, 'Kronecker Products and Shuffle Algebra,' IEEE Trans. Comput., Vol. C 30, No. 2, pp.116 125, Feb. 1981
  14. A. N. Al Rabadi, 'Quantum Circuit Synthesis Using Classes of GF(3) Reversilbe Fast Spectral Transforms,' Proc. of 34th International Symposium on Multiple Valued Logic, Toronto, Canada, pp.87 93, May 2004 https://doi.org/10.1109/ISMVL.2004.1319925
  15. R. Lidi, H. Niederreiter, and P. M. Cohn. Finite Fields, Addison Wesley Publishing Co., MA, USA, 1983